mlbench123's picture
Update app.py
74e6395 verified
raw
history blame
37 kB
import os
from pathlib import Path
from typing import List, Union, Tuple
from PIL import Image
import ezdxf.units
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
import gc
from scalingtestupdated import calculate_scaling_factor
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
import json
import time
import signal
from shapely.ops import unary_union
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
from u2netp import U2NETP
import logging
import shutil
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create cache directory for models
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# Paper size configurations (in mm)
PAPER_SIZES = {
"A4": {"width": 210, "height": 297},
"A3": {"width": 297, "height": 420},
"US Letter": {"width": 215.9, "height": 279.4}
}
# Custom Exception Classes
class TimeoutReachedError(Exception):
pass
class BoundaryOverlapError(Exception):
pass
class TextOverlapError(Exception):
pass
class PaperNotDetectedError(Exception):
"""Raised when the paper cannot be detected in the image"""
pass
class MultipleObjectsError(Exception):
"""Raised when multiple objects are detected on the paper"""
def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."):
super().__init__(message)
class NoObjectDetectedError(Exception):
"""Raised when no object is detected on the paper"""
def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."):
super().__init__(message)
class FingerCutOverlapError(Exception):
"""Raised when finger cuts overlap with existing geometry"""
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
super().__init__(message)
# Global model variables for lazy loading
paper_detector_global = None
u2net_global = None
birefnet = None
# Model paths
paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt") # You'll need to train/provide this
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
# Device configuration
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
def ensure_model_files():
"""Ensure model files are available in cache directory"""
if not os.path.exists(paper_model_path):
if os.path.exists("paper_detector.pt"):
shutil.copy("paper_detector.pt", paper_model_path)
else:
logger.warning("paper_detector.pt model file not found - using fallback detection")
if not os.path.exists(u2net_model_path):
if os.path.exists("u2netp.pth"):
shutil.copy("u2netp.pth", u2net_model_path)
else:
raise FileNotFoundError("u2netp.pth model file not found")
ensure_model_files()
# Lazy loading functions
def get_paper_detector():
"""Lazy load paper detector model"""
global paper_detector_global
if paper_detector_global is None:
logger.info("Loading paper detector model...")
if os.path.exists(paper_model_path):
paper_detector_global = YOLO(paper_model_path)
else:
# Fallback to generic object detection for paper-like rectangles
logger.warning("Using fallback paper detection")
paper_detector_global = None
logger.info("Paper detector loaded successfully")
return paper_detector_global
def get_u2net():
"""Lazy load U2NETP model"""
global u2net_global
if u2net_global is None:
logger.info("Loading U2NETP model...")
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
u2net_global.to(device)
u2net_global.eval()
logger.info("U2NETP model loaded successfully")
return u2net_global
def load_birefnet_model():
"""Load BiRefNet model from HuggingFace"""
return AutoModelForImageSegmentation.from_pretrained(
'ZhengPeng7/BiRefNet',
trust_remote_code=True
)
def get_birefnet():
"""Lazy load BiRefNet model"""
global birefnet
if birefnet is None:
logger.info("Loading BiRefNet model...")
birefnet = load_birefnet_model()
birefnet.to(device)
birefnet.eval()
logger.info("BiRefNet model loaded successfully")
return birefnet
def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
"""
Detect paper in the image using contour detection as fallback
Returns the paper contour and estimated scaling factor
"""
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
# Apply Gaussian blur
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# Edge detection
edges = cv2.Canny(blurred, 50, 150)
# Find contours
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter contours by area and aspect ratio to find paper-like rectangles
paper_contours = []
min_area = (image.shape[0] * image.shape[1]) * 0.1 # At least 10% of image
for contour in contours:
area = cv2.contourArea(contour)
if area > min_area:
# Approximate contour to polygon
epsilon = 0.02 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# Check if it's roughly rectangular (4 corners)
if len(approx) >= 4:
# Calculate bounding rectangle
rect = cv2.boundingRect(approx)
aspect_ratio = rect[2] / rect[3] # width / height
# Check if aspect ratio matches common paper ratios
# A4: 1.414, A3: 1.414, US Letter: 1.294
if 0.7 < aspect_ratio < 1.8: # Allow some tolerance
paper_contours.append((contour, area, aspect_ratio))
if not paper_contours:
raise PaperNotDetectedError("Could not detect paper in the image")
# Select the largest paper-like contour
paper_contours.sort(key=lambda x: x[1], reverse=True)
best_contour = paper_contours[0][0]
return best_contour, 0.0 # Return 0.0 as placeholder scaling factor
def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]:
"""
Detect paper bounds in the image and calculate scaling factor
"""
try:
paper_detector = get_paper_detector()
if paper_detector is not None:
# Use trained model if available
results = paper_detector.predict(image, conf=0.5)
if not results or len(results) == 0 or len(results[0].boxes) == 0:
logger.warning("Model detection failed, using fallback contour detection")
return detect_paper_contour(image)
# Get the largest detected paper
boxes = results[0].cpu().boxes.xyxy
largest_box = None
max_area = 0
for box in boxes:
x_min, y_min, x_max, y_max = box
area = (x_max - x_min) * (y_max - y_min)
if area > max_area:
max_area = area
largest_box = box
if largest_box is None:
raise PaperNotDetectedError("No paper detected by model")
# Convert box to contour-like format
x_min, y_min, x_max, y_max = map(int, largest_box)
paper_contour = np.array([
[[x_min, y_min]],
[[x_max, y_min]],
[[x_max, y_max]],
[[x_min, y_max]]
])
else:
# Use fallback contour detection
paper_contour, _ = detect_paper_contour(image)
# Calculate scaling factor based on paper size
scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size)
return paper_contour, scaling_factor
except Exception as e:
logger.error(f"Error in paper detection: {e}")
raise PaperNotDetectedError(f"Failed to detect paper: {str(e)}")
def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float:
"""
Calculate scaling factor based on detected paper dimensions
"""
# Get paper dimensions
paper_dims = PAPER_SIZES[paper_size]
expected_width_mm = paper_dims["width"]
expected_height_mm = paper_dims["height"]
# Calculate bounding rectangle of paper contour
rect = cv2.boundingRect(paper_contour)
detected_width_px = rect[2]
detected_height_px = rect[3]
# Calculate scaling factors for both dimensions
scale_x = expected_width_mm / detected_width_px
scale_y = expected_height_mm / detected_height_px
# Use average of both scales
scaling_factor = (scale_x + scale_y) / 2
logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm")
logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px")
return scaling_factor
def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
"""
Validate that only a single object is present on the paper
"""
# Create a mask for the paper area
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
cv2.fillPoly(paper_mask, [paper_contour], 255)
# Apply paper mask to object mask
masked_objects = cv2.bitwise_and(mask, paper_mask)
# Find contours of objects within paper bounds
contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter out very small contours (noise)
min_area = 1000 # Minimum area threshold
significant_contours = [c for c in contours if cv2.contourArea(c) > min_area]
if len(significant_contours) == 0:
raise NoObjectDetectedError()
elif len(significant_contours) > 1:
raise MultipleObjectsError()
logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found")
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
"""Remove background using U2NETP model"""
try:
u2net_model = get_u2net()
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
with torch.no_grad():
outputs = u2net_model(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
return pred_np
except Exception as e:
logger.error(f"Error in U2NETP background removal: {e}")
raise
def remove_bg(image: np.ndarray) -> np.ndarray:
"""Remove background using BiRefNet model for main objects"""
try:
birefnet_model = get_birefnet()
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image_pil = Image.fromarray(image)
input_images = transform_image(image_pil).unsqueeze(0).to(device)
with torch.no_grad():
preds = birefnet_model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image_pil.size)
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
return np.array(pred_pil.resize(scaled_size))
except Exception as e:
logger.error(f"Error in BiRefNet background removal: {e}")
raise
def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.1) -> np.ndarray:
"""
Remove paper area from the mask to focus only on objects
"""
# Create paper mask with slight expansion to ensure complete removal
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
# Expand paper contour slightly
epsilon = expansion_factor * cv2.arcLength(paper_contour, True)
expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True)
cv2.fillPoly(paper_mask, [expanded_contour], 255)
# Invert paper mask and apply to object mask
paper_mask_inv = cv2.bitwise_not(paper_mask)
result_mask = cv2.bitwise_and(mask, paper_mask_inv)
return result_mask
def resample_contour(contour, edge_radius_px: int = 0):
"""Resample contour with radius-aware smoothing and periodic handling."""
logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
num_points = 1500
sigma = max(2, int(edge_radius_px) // 4)
if len(contour) < 4:
error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
logger.error(error_msg)
raise ValueError(error_msg)
try:
contour = contour[:, 0, :]
logger.debug(f"Reshaped contour to shape {contour.shape}")
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack([contour, contour[0]])
tck, u = splprep(contour.T, u=None, s=0, per=True)
u_new = np.linspace(u.min(), u.max(), num_points)
x_new, y_new = splev(u_new, tck, der=0)
if sigma > 0:
x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
x_new[-1] = x_new[0]
y_new[-1] = y_new[0]
result = np.array([x_new, y_new]).T
logger.info(f"Completed resample_contour with result shape {result.shape}")
return result
except Exception as e:
logger.error(f"Error in resample_contour: {e}")
raise
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
"""Save contours as DXF splines with optional finger cuts"""
doc = ezdxf.new(units=ezdxf.units.MM)
doc.header["$INSUNITS"] = ezdxf.units.MM
msp = doc.modelspace()
final_polygons_inch = []
finger_centers = []
original_polygons = []
# Scale correction factor
scale_correction = 1.079
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
for x, y in resampled_contour]
if len(points_inch) < 3:
continue
tool_polygon = build_tool_polygon(points_inch)
original_polygons.append(tool_polygon)
if finger_clearance:
try:
tool_polygon, center = place_finger_cut_adjusted(
tool_polygon, points_inch, finger_centers, final_polygons_inch
)
except FingerCutOverlapError:
tool_polygon = original_polygons[-1]
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
continue
# Apply scale correction
corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
final_polygons_inch.append(tool_polygon)
except ValueError as e:
logger.warning(f"Skipping contour: {e}")
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
return dxf_filepath, final_polygons_inch, original_polygons
def build_tool_polygon(points_inch):
"""Build a polygon from inch-converted points"""
return Polygon(points_inch)
def polygon_to_exterior_coords(poly):
"""Extract exterior coordinates from polygon"""
logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")
try:
if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
logger.debug(f"Performing unary_union on {poly.geom_type}")
unified = unary_union(poly)
if unified.is_empty:
logger.warning("unary_union produced an empty geometry; returning empty list")
return []
if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
largest = None
max_area = 0.0
for g in getattr(unified, "geoms", []):
if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
max_area = g.area
largest = g
if largest is None:
logger.warning("No valid Polygon found in unified geometry; returning empty list")
return []
poly = largest
else:
poly = unified
if not hasattr(poly, "exterior") or poly.exterior is None:
logger.warning("Input geometry has no exterior ring; returning empty list")
return []
raw_coords = list(poly.exterior.coords)
total = len(raw_coords)
logger.info(f"Extracted {total} raw exterior coordinates")
if total == 0:
return []
# Subsample coordinates to at most 100 points
max_pts = 100
if total > max_pts:
step = total // max_pts
sampled = [raw_coords[i] for i in range(0, total, step)]
if sampled[-1] != raw_coords[-1]:
sampled.append(raw_coords[-1])
logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
return sampled
else:
return raw_coords
except Exception as e:
logger.error(f"Error in polygon_to_exterior_coords: {e}")
return []
def place_finger_cut_adjusted(
tool_polygon: Polygon,
points_inch: list,
existing_centers: list,
all_polygons: list,
circle_diameter: float = 25.4,
min_gap: float = 0.5,
max_attempts: int = 100
) -> Tuple[Polygon, tuple]:
"""Place finger cuts with collision avoidance"""
logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")
def fallback_solution():
logger.warning("Using fallback approach for finger cut placement")
fallback_center = points_inch[len(points_inch) // 2]
r = circle_diameter / 2.0
fallback_circle = Point(fallback_center).buffer(r, resolution=32)
try:
union_poly = tool_polygon.union(fallback_circle)
except Exception as e:
logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))
existing_centers.append(fallback_center)
logger.info(f"Fallback finger cut placed at {fallback_center}")
return union_poly, fallback_center
r = circle_diameter / 2.0
needed_center_dist = circle_diameter + min_gap
raw_perimeter = polygon_to_exterior_coords(tool_polygon)
if not raw_perimeter:
logger.warning("No valid exterior coords found; using fallback immediately")
return fallback_solution()
if len(raw_perimeter) > 100:
step = len(raw_perimeter) // 100
perimeter_coords = raw_perimeter[::step]
logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
else:
perimeter_coords = raw_perimeter[:]
indices = list(range(len(perimeter_coords)))
np.random.shuffle(indices)
logger.debug(f"Shuffled perimeter indices for candidate order")
start_time = time.time()
timeout_secs = 5.0
attempts = 0
try:
while attempts < max_attempts:
if time.time() - start_time > timeout_secs - 0.1:
logger.warning(f"Approaching timeout after {attempts} attempts")
return fallback_solution()
for idx in indices:
if time.time() - start_time > timeout_secs - 0.05:
logger.warning("Timeout during candidate-point loop")
return fallback_solution()
cx, cy = perimeter_coords[idx]
for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
candidate_center = (cx + dx, cy + dy)
# Check distance to existing finger centers
too_close_finger = any(
np.hypot(candidate_center[0] - ex, candidate_center[1] - ey)
< needed_center_dist
for (ex, ey) in existing_centers
)
if too_close_finger:
continue
# Build candidate circle
candidate_circle = Point(candidate_center).buffer(r, resolution=32)
# Must overlap ≥30% with this polygon
try:
inter_area = tool_polygon.intersection(candidate_circle).area
except Exception:
continue
if inter_area < 0.3 * candidate_circle.area:
continue
# Must not intersect other polygons
invalid = False
for other_poly in all_polygons:
if other_poly.equals(tool_polygon):
continue
if other_poly.buffer(min_gap).intersects(candidate_circle) or \
other_poly.buffer(min_gap).touches(candidate_circle):
invalid = True
break
if invalid:
continue
# Union and return
try:
union_poly = tool_polygon.union(candidate_circle)
if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
continue
if union_poly.equals(tool_polygon):
continue
except Exception:
continue
existing_centers.append(candidate_center)
logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
return union_poly, candidate_center
attempts += 1
if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
logger.warning(f"Approaching timeout (attempt {attempts})")
return fallback_solution()
logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
return fallback_solution()
except Exception as e:
logger.error(f"Error in place_finger_cut_adjusted: {e}")
return fallback_solution()
def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
"""Extract outlines from binary image"""
contours, _ = cv2.findContours(
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
outline_image = np.full_like(binary_image, 255)
return outline_image, contours
def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
"""Round mask edges using contour smoothing"""
if radius_mm <= 0 or scaling_factor <= 0:
return mask
radius_px = max(1, int(radius_mm / scaling_factor))
if np.count_nonzero(mask) < 500:
return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = [c for c in contours if cv2.contourArea(c) > 100]
smoothed_contours = []
for contour in contours:
try:
resampled = resample_contour(contour, radius_px)
resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
smoothed_contours.append(resampled)
except Exception as e:
logger.warning(f"Error smoothing contour: {e}")
smoothed_contours.append(contour)
rounded = np.zeros_like(mask)
cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
return rounded
def cleanup_memory():
"""Clean up memory after processing"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.info("Memory cleanup completed")
def cleanup_models():
"""Unload models to free memory"""
global paper_detector_global, u2net_global, birefnet
if paper_detector_global is not None:
del paper_detector_global
paper_detector_global = None
if u2net_global is not None:
del u2net_global
u2net_global = None
if birefnet is not None:
del birefnet
birefnet = None
cleanup_memory()
def make_square(img: np.ndarray):
"""Make the image square by padding"""
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3:
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0),
),
mode="edge",
)
else:
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
),
mode="edge",
)
return padded
def predict_with_paper(image, paper_size, offset, offset_unit, edge_radius, finger_clearance=False):
"""Main prediction function using paper as reference"""
if offset_unit == "inches":
offset *= 25.4
if edge_radius is None or edge_radius == 0:
edge_radius = 0.0001
if offset < 0:
raise gr.Error("Offset Value Can't be negative")
try:
# Detect paper bounds and calculate scaling factor
paper_contour, scaling_factor = detect_paper_bounds(image, paper_size)
logger.info(f"Paper detected with scaling factor: {scaling_factor:.4f} mm/px")
except PaperNotDetectedError as e:
return (
None, None, None, None,
f"Error: {str(e)}"
)
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
try:
# Remove background from main objects
orig_size = image.shape[:2]
objects_mask = remove_bg(image)
processed_size = objects_mask.shape[:2]
# Resize mask to match original image
objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0]))
# Remove paper area from mask to focus only on objects
objects_mask = exclude_paper_area(objects_mask, paper_contour)
# Validate single object
validate_single_object(objects_mask, paper_contour)
except (MultipleObjectsError, NoObjectDetectedError) as e:
return (
None, None, None, None,
f"Error: {str(e)}"
)
except Exception as e:
raise gr.Error(f"Error in object detection: {str(e)}")
# Apply edge rounding if specified
if edge_radius > 0:
rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
else:
rounded_mask = objects_mask.copy()
# Apply dilation for offset
if offset > 0:
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
dilated_mask = cv2.dilate(rounded_mask, kernel)
else:
dilated_mask = rounded_mask.copy()
# Save original dilated mask for output
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
dilated_mask_orig = dilated_mask.copy()
# Extract contours
outlines, contours = extract_outlines(dilated_mask)
try:
# Generate DXF
dxf, finger_polygons, original_polygons = save_dxf_spline(
contours,
scaling_factor,
processed_size[0],
finger_clearance=(finger_clearance == "On")
)
except FingerCutOverlapError as e:
raise gr.Error(str(e))
# Create annotated image
shrunked_img_contours = image.copy()
if finger_clearance == "On":
outlines = np.full_like(dilated_mask, 255)
for poly in finger_polygons:
try:
coords = np.array([
(int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
for x, y in poly.exterior.coords
], np.int32).reshape((-1, 1, 2))
cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
except Exception as e:
logger.warning(f"Failed to draw finger cut: {e}")
continue
else:
outlines = np.full_like(dilated_mask, 255)
cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
# Draw paper bounds on annotated image
cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3)
# Add paper size text
paper_text = f"Paper: {paper_size}"
cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
cleanup_models()
return (
shrunked_img_contours,
outlines,
dxf,
dilated_mask_orig,
f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}"
)
def predict_full_paper(image, paper_size, enable_fillet, fillet_value_mm, enable_finger_cut, selected_outputs):
"""
Full prediction function with paper reference and flexible outputs
Returns DXF + conditionally selected additional outputs
"""
radius = fillet_value_mm if enable_fillet == "On" else 0
finger_flag = "On" if enable_finger_cut == "On" else "Off"
# Always get all outputs from predict_with_paper
ann, outlines, dxf_path, mask, scale_info = predict_with_paper(
image,
paper_size,
offset=0, # No offset for now, can be added as parameter later
offset_unit="mm",
edge_radius=radius,
finger_clearance=finger_flag,
)
# Return based on selected outputs
return (
dxf_path, # Always return DXF
ann if "Annotated Image" in selected_outputs else None,
outlines if "Outlines" in selected_outputs else None,
mask if "Mask" in selected_outputs else None,
scale_info # Always return scaling info
)
# Gradio Interface
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Paper-Based DXF Generator
Upload an image with a single object placed on paper (A4, A3, or US Letter).
The paper serves as a size reference for accurate DXF generation.
**Instructions:**
1. Place a single object on paper
2. Select the correct paper size
3. Configure options as needed
4. Click Submit to generate DXF
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image (Object on Paper)",
type="numpy",
height=400
)
paper_size = gr.Radio(
choices=["A4", "A3", "US Letter"],
value="A4",
label="Paper Size",
info="Select the paper size used in your image"
)
with gr.Group():
gr.Markdown("### Edge Rounding")
enable_fillet = gr.Radio(
choices=["On", "Off"],
value="Off",
label="Enable Edge Rounding",
interactive=True
)
fillet_value_mm = gr.Slider(
minimum=0,
maximum=20,
step=1,
value=5,
label="Edge Radius (mm)",
visible=False,
interactive=True
)
with gr.Group():
gr.Markdown("### Finger Cuts")
enable_finger_cut = gr.Radio(
choices=["On", "Off"],
value="Off",
label="Enable Finger Cuts",
info="Add circular cuts for easier handling"
)
output_options = gr.CheckboxGroup(
choices=["Annotated Image", "Outlines", "Mask"],
value=[],
label="Additional Outputs",
info="DXF is always included"
)
submit_btn = gr.Button("Generate DXF", variant="primary", size="lg")
with gr.Column():
with gr.Group():
gr.Markdown("### Generated Files")
dxf_file = gr.File(label="DXF File", file_types=[".dxf"])
scale_info = gr.Textbox(label="Scaling Information", interactive=False)
with gr.Group():
gr.Markdown("### Preview Images")
output_image = gr.Image(label="Annotated Image", visible=False)
outlines_image = gr.Image(label="Outlines", visible=False)
mask_image = gr.Image(label="Mask", visible=False)
# Dynamic visibility updates
def toggle_fillet(choice):
return gr.update(visible=(choice == "On"))
def update_outputs_visibility(selected):
return [
gr.update(visible="Annotated Image" in selected),
gr.update(visible="Outlines" in selected),
gr.update(visible="Mask" in selected)
]
# Event handlers
enable_fillet.change(
fn=toggle_fillet,
inputs=enable_fillet,
outputs=fillet_value_mm
)
output_options.change(
fn=update_outputs_visibility,
inputs=output_options,
outputs=[output_image, outlines_image, mask_image]
)
submit_btn.click(
fn=predict_full_paper,
inputs=[
input_image,
paper_size,
enable_fillet,
fillet_value_mm,
enable_finger_cut,
output_options
],
outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
)
# Example gallery
with gr.Row():
gr.Markdown("""
### Tips for Best Results:
- Ensure good lighting and clear paper edges
- Place object completely on the paper
- Avoid shadows that might interfere with detection
- Use high contrast between object and paper
""")
demo.launch(share=True)