Spaces:
Running
Running
Delete app.py.txt
Browse files- app.py.txt +0 -1007
app.py.txt
DELETED
@@ -1,1007 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from pathlib import Path
|
3 |
-
from typing import List, Union, Tuple
|
4 |
-
from PIL import Image
|
5 |
-
import ezdxf.units
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
from torchvision import transforms
|
9 |
-
from ultralytics import YOLOWorld, YOLO
|
10 |
-
from ultralytics.engine.results import Results
|
11 |
-
from ultralytics.utils.plotting import save_one_box
|
12 |
-
from transformers import AutoModelForImageSegmentation
|
13 |
-
import cv2
|
14 |
-
import ezdxf
|
15 |
-
import gradio as gr
|
16 |
-
import gc
|
17 |
-
from scalingtestupdated import calculate_scaling_factor
|
18 |
-
from scipy.interpolate import splprep, splev
|
19 |
-
from scipy.ndimage import gaussian_filter1d
|
20 |
-
import json
|
21 |
-
import time
|
22 |
-
import signal
|
23 |
-
from shapely.ops import unary_union
|
24 |
-
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
|
25 |
-
from u2netp import U2NETP
|
26 |
-
import logging
|
27 |
-
import shutil
|
28 |
-
|
29 |
-
# Initialize logging
|
30 |
-
logging.basicConfig(level=logging.INFO)
|
31 |
-
logger = logging.getLogger(__name__)
|
32 |
-
|
33 |
-
# Create cache directory for models
|
34 |
-
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
|
35 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
36 |
-
|
37 |
-
# Paper size configurations (in mm)
|
38 |
-
PAPER_SIZES = {
|
39 |
-
"A4": {"width": 210, "height": 297},
|
40 |
-
"A3": {"width": 297, "height": 420},
|
41 |
-
"US Letter": {"width": 215.9, "height": 279.4}
|
42 |
-
}
|
43 |
-
|
44 |
-
# Custom Exception Classes
|
45 |
-
class TimeoutReachedError(Exception):
|
46 |
-
pass
|
47 |
-
|
48 |
-
class BoundaryOverlapError(Exception):
|
49 |
-
pass
|
50 |
-
|
51 |
-
class TextOverlapError(Exception):
|
52 |
-
pass
|
53 |
-
|
54 |
-
class PaperNotDetectedError(Exception):
|
55 |
-
"""Raised when the paper cannot be detected in the image"""
|
56 |
-
pass
|
57 |
-
|
58 |
-
class MultipleObjectsError(Exception):
|
59 |
-
"""Raised when multiple objects are detected on the paper"""
|
60 |
-
def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."):
|
61 |
-
super().__init__(message)
|
62 |
-
|
63 |
-
class NoObjectDetectedError(Exception):
|
64 |
-
"""Raised when no object is detected on the paper"""
|
65 |
-
def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."):
|
66 |
-
super().__init__(message)
|
67 |
-
|
68 |
-
class FingerCutOverlapError(Exception):
|
69 |
-
"""Raised when finger cuts overlap with existing geometry"""
|
70 |
-
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
|
71 |
-
super().__init__(message)
|
72 |
-
|
73 |
-
# Global model variables for lazy loading
|
74 |
-
paper_detector_global = None
|
75 |
-
u2net_global = None
|
76 |
-
birefnet = None
|
77 |
-
|
78 |
-
# Model paths
|
79 |
-
paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt") # You'll need to train/provide this
|
80 |
-
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
|
81 |
-
|
82 |
-
# Device configuration
|
83 |
-
device = "cpu"
|
84 |
-
torch.set_float32_matmul_precision(["high", "highest"][0])
|
85 |
-
|
86 |
-
def ensure_model_files():
|
87 |
-
"""Ensure model files are available in cache directory"""
|
88 |
-
if not os.path.exists(paper_model_path):
|
89 |
-
if os.path.exists("paper_detector.pt"):
|
90 |
-
shutil.copy("paper_detector.pt", paper_model_path)
|
91 |
-
else:
|
92 |
-
logger.warning("paper_detector.pt model file not found - using fallback detection")
|
93 |
-
|
94 |
-
if not os.path.exists(u2net_model_path):
|
95 |
-
if os.path.exists("u2netp.pth"):
|
96 |
-
shutil.copy("u2netp.pth", u2net_model_path)
|
97 |
-
else:
|
98 |
-
raise FileNotFoundError("u2netp.pth model file not found")
|
99 |
-
|
100 |
-
ensure_model_files()
|
101 |
-
|
102 |
-
# Lazy loading functions
|
103 |
-
def get_paper_detector():
|
104 |
-
"""Lazy load paper detector model"""
|
105 |
-
global paper_detector_global
|
106 |
-
if paper_detector_global is None:
|
107 |
-
logger.info("Loading paper detector model...")
|
108 |
-
if os.path.exists(paper_model_path):
|
109 |
-
paper_detector_global = YOLO(paper_model_path)
|
110 |
-
else:
|
111 |
-
# Fallback to generic object detection for paper-like rectangles
|
112 |
-
logger.warning("Using fallback paper detection")
|
113 |
-
paper_detector_global = None
|
114 |
-
logger.info("Paper detector loaded successfully")
|
115 |
-
return paper_detector_global
|
116 |
-
|
117 |
-
def get_u2net():
|
118 |
-
"""Lazy load U2NETP model"""
|
119 |
-
global u2net_global
|
120 |
-
if u2net_global is None:
|
121 |
-
logger.info("Loading U2NETP model...")
|
122 |
-
u2net_global = U2NETP(3, 1)
|
123 |
-
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
|
124 |
-
u2net_global.to(device)
|
125 |
-
u2net_global.eval()
|
126 |
-
logger.info("U2NETP model loaded successfully")
|
127 |
-
return u2net_global
|
128 |
-
|
129 |
-
def load_birefnet_model():
|
130 |
-
"""Load BiRefNet model from HuggingFace"""
|
131 |
-
return AutoModelForImageSegmentation.from_pretrained(
|
132 |
-
'ZhengPeng7/BiRefNet',
|
133 |
-
trust_remote_code=True
|
134 |
-
)
|
135 |
-
|
136 |
-
def get_birefnet():
|
137 |
-
"""Lazy load BiRefNet model"""
|
138 |
-
global birefnet
|
139 |
-
if birefnet is None:
|
140 |
-
logger.info("Loading BiRefNet model...")
|
141 |
-
birefnet = load_birefnet_model()
|
142 |
-
birefnet.to(device)
|
143 |
-
birefnet.eval()
|
144 |
-
logger.info("BiRefNet model loaded successfully")
|
145 |
-
return birefnet
|
146 |
-
|
147 |
-
def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
|
148 |
-
"""
|
149 |
-
Detect paper in the image using contour detection as fallback
|
150 |
-
Returns the paper contour and estimated scaling factor
|
151 |
-
"""
|
152 |
-
# Convert to grayscale
|
153 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
154 |
-
|
155 |
-
# Apply Gaussian blur
|
156 |
-
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
157 |
-
|
158 |
-
# Edge detection
|
159 |
-
edges = cv2.Canny(blurred, 50, 150)
|
160 |
-
|
161 |
-
# Find contours
|
162 |
-
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
163 |
-
|
164 |
-
# Filter contours by area and aspect ratio to find paper-like rectangles
|
165 |
-
paper_contours = []
|
166 |
-
min_area = (image.shape[0] * image.shape[1]) * 0.1 # At least 10% of image
|
167 |
-
|
168 |
-
for contour in contours:
|
169 |
-
area = cv2.contourArea(contour)
|
170 |
-
if area > min_area:
|
171 |
-
# Approximate contour to polygon
|
172 |
-
epsilon = 0.02 * cv2.arcLength(contour, True)
|
173 |
-
approx = cv2.approxPolyDP(contour, epsilon, True)
|
174 |
-
|
175 |
-
# Check if it's roughly rectangular (4 corners)
|
176 |
-
if len(approx) >= 4:
|
177 |
-
# Calculate bounding rectangle
|
178 |
-
rect = cv2.boundingRect(approx)
|
179 |
-
aspect_ratio = rect[2] / rect[3] # width / height
|
180 |
-
|
181 |
-
# Check if aspect ratio matches common paper ratios
|
182 |
-
# A4: 1.414, A3: 1.414, US Letter: 1.294
|
183 |
-
if 0.7 < aspect_ratio < 1.8: # Allow some tolerance
|
184 |
-
paper_contours.append((contour, area, aspect_ratio))
|
185 |
-
|
186 |
-
if not paper_contours:
|
187 |
-
raise PaperNotDetectedError("Could not detect paper in the image")
|
188 |
-
|
189 |
-
# Select the largest paper-like contour
|
190 |
-
paper_contours.sort(key=lambda x: x[1], reverse=True)
|
191 |
-
best_contour = paper_contours[0][0]
|
192 |
-
|
193 |
-
return best_contour, 0.0 # Return 0.0 as placeholder scaling factor
|
194 |
-
|
195 |
-
def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]:
|
196 |
-
"""
|
197 |
-
Detect paper bounds in the image and calculate scaling factor
|
198 |
-
"""
|
199 |
-
try:
|
200 |
-
paper_detector = get_paper_detector()
|
201 |
-
|
202 |
-
if paper_detector is not None:
|
203 |
-
# Use trained model if available
|
204 |
-
results = paper_detector.predict(image, conf=0.5)
|
205 |
-
if not results or len(results) == 0 or len(results[0].boxes) == 0:
|
206 |
-
logger.warning("Model detection failed, using fallback contour detection")
|
207 |
-
return detect_paper_contour(image)
|
208 |
-
|
209 |
-
# Get the largest detected paper
|
210 |
-
boxes = results[0].cpu().boxes.xyxy
|
211 |
-
largest_box = None
|
212 |
-
max_area = 0
|
213 |
-
|
214 |
-
for box in boxes:
|
215 |
-
x_min, y_min, x_max, y_max = box
|
216 |
-
area = (x_max - x_min) * (y_max - y_min)
|
217 |
-
if area > max_area:
|
218 |
-
max_area = area
|
219 |
-
largest_box = box
|
220 |
-
|
221 |
-
if largest_box is None:
|
222 |
-
raise PaperNotDetectedError("No paper detected by model")
|
223 |
-
|
224 |
-
# Convert box to contour-like format
|
225 |
-
x_min, y_min, x_max, y_max = map(int, largest_box)
|
226 |
-
paper_contour = np.array([
|
227 |
-
[[x_min, y_min]],
|
228 |
-
[[x_max, y_min]],
|
229 |
-
[[x_max, y_max]],
|
230 |
-
[[x_min, y_max]]
|
231 |
-
])
|
232 |
-
|
233 |
-
else:
|
234 |
-
# Use fallback contour detection
|
235 |
-
paper_contour, _ = detect_paper_contour(image)
|
236 |
-
|
237 |
-
# Calculate scaling factor based on paper size
|
238 |
-
scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size)
|
239 |
-
|
240 |
-
return paper_contour, scaling_factor
|
241 |
-
|
242 |
-
except Exception as e:
|
243 |
-
logger.error(f"Error in paper detection: {e}")
|
244 |
-
raise PaperNotDetectedError(f"Failed to detect paper: {str(e)}")
|
245 |
-
|
246 |
-
def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float:
|
247 |
-
"""
|
248 |
-
Calculate scaling factor based on detected paper dimensions
|
249 |
-
"""
|
250 |
-
# Get paper dimensions
|
251 |
-
paper_dims = PAPER_SIZES[paper_size]
|
252 |
-
expected_width_mm = paper_dims["width"]
|
253 |
-
expected_height_mm = paper_dims["height"]
|
254 |
-
|
255 |
-
# Calculate bounding rectangle of paper contour
|
256 |
-
rect = cv2.boundingRect(paper_contour)
|
257 |
-
detected_width_px = rect[2]
|
258 |
-
detected_height_px = rect[3]
|
259 |
-
|
260 |
-
# Calculate scaling factors for both dimensions
|
261 |
-
scale_x = expected_width_mm / detected_width_px
|
262 |
-
scale_y = expected_height_mm / detected_height_px
|
263 |
-
|
264 |
-
# Use average of both scales
|
265 |
-
scaling_factor = (scale_x + scale_y) / 2
|
266 |
-
|
267 |
-
logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm")
|
268 |
-
logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px")
|
269 |
-
|
270 |
-
return scaling_factor
|
271 |
-
|
272 |
-
def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
|
273 |
-
"""
|
274 |
-
Validate that only a single object is present on the paper
|
275 |
-
"""
|
276 |
-
# Create a mask for the paper area
|
277 |
-
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
|
278 |
-
cv2.fillPoly(paper_mask, [paper_contour], 255)
|
279 |
-
|
280 |
-
# Apply paper mask to object mask
|
281 |
-
masked_objects = cv2.bitwise_and(mask, paper_mask)
|
282 |
-
|
283 |
-
# Find contours of objects within paper bounds
|
284 |
-
contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
285 |
-
|
286 |
-
# Filter out very small contours (noise)
|
287 |
-
min_area = 1000 # Minimum area threshold
|
288 |
-
significant_contours = [c for c in contours if cv2.contourArea(c) > min_area]
|
289 |
-
|
290 |
-
if len(significant_contours) == 0:
|
291 |
-
raise NoObjectDetectedError()
|
292 |
-
elif len(significant_contours) > 1:
|
293 |
-
raise MultipleObjectsError()
|
294 |
-
|
295 |
-
logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found")
|
296 |
-
|
297 |
-
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
298 |
-
"""Remove background using U2NETP model"""
|
299 |
-
try:
|
300 |
-
u2net_model = get_u2net()
|
301 |
-
|
302 |
-
image_pil = Image.fromarray(image)
|
303 |
-
transform_u2netp = transforms.Compose([
|
304 |
-
transforms.Resize((320, 320)),
|
305 |
-
transforms.ToTensor(),
|
306 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
307 |
-
])
|
308 |
-
|
309 |
-
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
|
310 |
-
|
311 |
-
with torch.no_grad():
|
312 |
-
outputs = u2net_model(input_tensor)
|
313 |
-
|
314 |
-
pred = outputs[0]
|
315 |
-
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
|
316 |
-
pred_np = pred.squeeze().cpu().numpy()
|
317 |
-
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
|
318 |
-
pred_np = (pred_np * 255).astype(np.uint8)
|
319 |
-
|
320 |
-
return pred_np
|
321 |
-
except Exception as e:
|
322 |
-
logger.error(f"Error in U2NETP background removal: {e}")
|
323 |
-
raise
|
324 |
-
|
325 |
-
def remove_bg(image: np.ndarray) -> np.ndarray:
|
326 |
-
"""Remove background using BiRefNet model for main objects"""
|
327 |
-
try:
|
328 |
-
birefnet_model = get_birefnet()
|
329 |
-
|
330 |
-
transform_image = transforms.Compose([
|
331 |
-
transforms.Resize((1024, 1024)),
|
332 |
-
transforms.ToTensor(),
|
333 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
334 |
-
])
|
335 |
-
|
336 |
-
image_pil = Image.fromarray(image)
|
337 |
-
input_images = transform_image(image_pil).unsqueeze(0).to(device)
|
338 |
-
|
339 |
-
with torch.no_grad():
|
340 |
-
preds = birefnet_model(input_images)[-1].sigmoid().cpu()
|
341 |
-
pred = preds[0].squeeze()
|
342 |
-
|
343 |
-
pred_pil = transforms.ToPILImage()(pred)
|
344 |
-
|
345 |
-
scale_ratio = 1024 / max(image_pil.size)
|
346 |
-
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
|
347 |
-
|
348 |
-
return np.array(pred_pil.resize(scaled_size))
|
349 |
-
except Exception as e:
|
350 |
-
logger.error(f"Error in BiRefNet background removal: {e}")
|
351 |
-
raise
|
352 |
-
|
353 |
-
def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.1) -> np.ndarray:
|
354 |
-
"""
|
355 |
-
Remove paper area from the mask to focus only on objects
|
356 |
-
"""
|
357 |
-
# Create paper mask with slight expansion to ensure complete removal
|
358 |
-
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
|
359 |
-
|
360 |
-
# Expand paper contour slightly
|
361 |
-
epsilon = expansion_factor * cv2.arcLength(paper_contour, True)
|
362 |
-
expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True)
|
363 |
-
|
364 |
-
cv2.fillPoly(paper_mask, [expanded_contour], 255)
|
365 |
-
|
366 |
-
# Invert paper mask and apply to object mask
|
367 |
-
paper_mask_inv = cv2.bitwise_not(paper_mask)
|
368 |
-
result_mask = cv2.bitwise_and(mask, paper_mask_inv)
|
369 |
-
|
370 |
-
return result_mask
|
371 |
-
|
372 |
-
def resample_contour(contour, edge_radius_px: int = 0):
|
373 |
-
"""Resample contour with radius-aware smoothing and periodic handling."""
|
374 |
-
logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
|
375 |
-
|
376 |
-
num_points = 1500
|
377 |
-
sigma = max(2, int(edge_radius_px) // 4)
|
378 |
-
|
379 |
-
if len(contour) < 4:
|
380 |
-
error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
|
381 |
-
logger.error(error_msg)
|
382 |
-
raise ValueError(error_msg)
|
383 |
-
|
384 |
-
try:
|
385 |
-
contour = contour[:, 0, :]
|
386 |
-
logger.debug(f"Reshaped contour to shape {contour.shape}")
|
387 |
-
|
388 |
-
if not np.array_equal(contour[0], contour[-1]):
|
389 |
-
contour = np.vstack([contour, contour[0]])
|
390 |
-
|
391 |
-
tck, u = splprep(contour.T, u=None, s=0, per=True)
|
392 |
-
|
393 |
-
u_new = np.linspace(u.min(), u.max(), num_points)
|
394 |
-
x_new, y_new = splev(u_new, tck, der=0)
|
395 |
-
|
396 |
-
if sigma > 0:
|
397 |
-
x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
|
398 |
-
y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
|
399 |
-
|
400 |
-
x_new[-1] = x_new[0]
|
401 |
-
y_new[-1] = y_new[0]
|
402 |
-
|
403 |
-
result = np.array([x_new, y_new]).T
|
404 |
-
logger.info(f"Completed resample_contour with result shape {result.shape}")
|
405 |
-
return result
|
406 |
-
|
407 |
-
except Exception as e:
|
408 |
-
logger.error(f"Error in resample_contour: {e}")
|
409 |
-
raise
|
410 |
-
|
411 |
-
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
412 |
-
"""Save contours as DXF splines with optional finger cuts"""
|
413 |
-
doc = ezdxf.new(units=ezdxf.units.MM)
|
414 |
-
doc.header["$INSUNITS"] = ezdxf.units.MM
|
415 |
-
msp = doc.modelspace()
|
416 |
-
final_polygons_inch = []
|
417 |
-
finger_centers = []
|
418 |
-
original_polygons = []
|
419 |
-
|
420 |
-
# Scale correction factor
|
421 |
-
scale_correction = 1.079
|
422 |
-
|
423 |
-
for contour in inflated_contours:
|
424 |
-
try:
|
425 |
-
resampled_contour = resample_contour(contour)
|
426 |
-
|
427 |
-
points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
|
428 |
-
for x, y in resampled_contour]
|
429 |
-
|
430 |
-
if len(points_inch) < 3:
|
431 |
-
continue
|
432 |
-
|
433 |
-
tool_polygon = build_tool_polygon(points_inch)
|
434 |
-
original_polygons.append(tool_polygon)
|
435 |
-
|
436 |
-
if finger_clearance:
|
437 |
-
try:
|
438 |
-
tool_polygon, center = place_finger_cut_adjusted(
|
439 |
-
tool_polygon, points_inch, finger_centers, final_polygons_inch
|
440 |
-
)
|
441 |
-
except FingerCutOverlapError:
|
442 |
-
tool_polygon = original_polygons[-1]
|
443 |
-
|
444 |
-
exterior_coords = polygon_to_exterior_coords(tool_polygon)
|
445 |
-
if len(exterior_coords) < 3:
|
446 |
-
continue
|
447 |
-
|
448 |
-
# Apply scale correction
|
449 |
-
corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
|
450 |
-
|
451 |
-
msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
452 |
-
final_polygons_inch.append(tool_polygon)
|
453 |
-
|
454 |
-
except ValueError as e:
|
455 |
-
logger.warning(f"Skipping contour: {e}")
|
456 |
-
|
457 |
-
dxf_filepath = os.path.join("./outputs", "out.dxf")
|
458 |
-
doc.saveas(dxf_filepath)
|
459 |
-
return dxf_filepath, final_polygons_inch, original_polygons
|
460 |
-
|
461 |
-
def build_tool_polygon(points_inch):
|
462 |
-
"""Build a polygon from inch-converted points"""
|
463 |
-
return Polygon(points_inch)
|
464 |
-
|
465 |
-
def polygon_to_exterior_coords(poly):
|
466 |
-
"""Extract exterior coordinates from polygon"""
|
467 |
-
logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")
|
468 |
-
|
469 |
-
try:
|
470 |
-
if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
|
471 |
-
logger.debug(f"Performing unary_union on {poly.geom_type}")
|
472 |
-
unified = unary_union(poly)
|
473 |
-
if unified.is_empty:
|
474 |
-
logger.warning("unary_union produced an empty geometry; returning empty list")
|
475 |
-
return []
|
476 |
-
|
477 |
-
if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
|
478 |
-
largest = None
|
479 |
-
max_area = 0.0
|
480 |
-
for g in getattr(unified, "geoms", []):
|
481 |
-
if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
|
482 |
-
max_area = g.area
|
483 |
-
largest = g
|
484 |
-
if largest is None:
|
485 |
-
logger.warning("No valid Polygon found in unified geometry; returning empty list")
|
486 |
-
return []
|
487 |
-
poly = largest
|
488 |
-
else:
|
489 |
-
poly = unified
|
490 |
-
|
491 |
-
if not hasattr(poly, "exterior") or poly.exterior is None:
|
492 |
-
logger.warning("Input geometry has no exterior ring; returning empty list")
|
493 |
-
return []
|
494 |
-
|
495 |
-
raw_coords = list(poly.exterior.coords)
|
496 |
-
total = len(raw_coords)
|
497 |
-
logger.info(f"Extracted {total} raw exterior coordinates")
|
498 |
-
|
499 |
-
if total == 0:
|
500 |
-
return []
|
501 |
-
|
502 |
-
# Subsample coordinates to at most 100 points
|
503 |
-
max_pts = 100
|
504 |
-
if total > max_pts:
|
505 |
-
step = total // max_pts
|
506 |
-
sampled = [raw_coords[i] for i in range(0, total, step)]
|
507 |
-
if sampled[-1] != raw_coords[-1]:
|
508 |
-
sampled.append(raw_coords[-1])
|
509 |
-
logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
|
510 |
-
return sampled
|
511 |
-
else:
|
512 |
-
return raw_coords
|
513 |
-
|
514 |
-
except Exception as e:
|
515 |
-
logger.error(f"Error in polygon_to_exterior_coords: {e}")
|
516 |
-
return []
|
517 |
-
|
518 |
-
def place_finger_cut_adjusted(
|
519 |
-
tool_polygon: Polygon,
|
520 |
-
points_inch: list,
|
521 |
-
existing_centers: list,
|
522 |
-
all_polygons: list,
|
523 |
-
circle_diameter: float = 25.4,
|
524 |
-
min_gap: float = 0.5,
|
525 |
-
max_attempts: int = 100
|
526 |
-
) -> Tuple[Polygon, tuple]:
|
527 |
-
"""Place finger cuts with collision avoidance"""
|
528 |
-
logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")
|
529 |
-
|
530 |
-
def fallback_solution():
|
531 |
-
logger.warning("Using fallback approach for finger cut placement")
|
532 |
-
fallback_center = points_inch[len(points_inch) // 2]
|
533 |
-
r = circle_diameter / 2.0
|
534 |
-
fallback_circle = Point(fallback_center).buffer(r, resolution=32)
|
535 |
-
try:
|
536 |
-
union_poly = tool_polygon.union(fallback_circle)
|
537 |
-
except Exception as e:
|
538 |
-
logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
|
539 |
-
union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))
|
540 |
-
|
541 |
-
existing_centers.append(fallback_center)
|
542 |
-
logger.info(f"Fallback finger cut placed at {fallback_center}")
|
543 |
-
return union_poly, fallback_center
|
544 |
-
|
545 |
-
r = circle_diameter / 2.0
|
546 |
-
needed_center_dist = circle_diameter + min_gap
|
547 |
-
|
548 |
-
raw_perimeter = polygon_to_exterior_coords(tool_polygon)
|
549 |
-
if not raw_perimeter:
|
550 |
-
logger.warning("No valid exterior coords found; using fallback immediately")
|
551 |
-
return fallback_solution()
|
552 |
-
|
553 |
-
if len(raw_perimeter) > 100:
|
554 |
-
step = len(raw_perimeter) // 100
|
555 |
-
perimeter_coords = raw_perimeter[::step]
|
556 |
-
logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
|
557 |
-
else:
|
558 |
-
perimeter_coords = raw_perimeter[:]
|
559 |
-
|
560 |
-
indices = list(range(len(perimeter_coords)))
|
561 |
-
np.random.shuffle(indices)
|
562 |
-
logger.debug(f"Shuffled perimeter indices for candidate order")
|
563 |
-
|
564 |
-
start_time = time.time()
|
565 |
-
timeout_secs = 5.0
|
566 |
-
|
567 |
-
attempts = 0
|
568 |
-
try:
|
569 |
-
while attempts < max_attempts:
|
570 |
-
if time.time() - start_time > timeout_secs - 0.1:
|
571 |
-
logger.warning(f"Approaching timeout after {attempts} attempts")
|
572 |
-
return fallback_solution()
|
573 |
-
|
574 |
-
for idx in indices:
|
575 |
-
if time.time() - start_time > timeout_secs - 0.05:
|
576 |
-
logger.warning("Timeout during candidate-point loop")
|
577 |
-
return fallback_solution()
|
578 |
-
|
579 |
-
cx, cy = perimeter_coords[idx]
|
580 |
-
for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
|
581 |
-
candidate_center = (cx + dx, cy + dy)
|
582 |
-
|
583 |
-
# Check distance to existing finger centers
|
584 |
-
too_close_finger = any(
|
585 |
-
np.hypot(candidate_center[0] - ex, candidate_center[1] - ey)
|
586 |
-
< needed_center_dist
|
587 |
-
for (ex, ey) in existing_centers
|
588 |
-
)
|
589 |
-
if too_close_finger:
|
590 |
-
continue
|
591 |
-
|
592 |
-
# Build candidate circle
|
593 |
-
candidate_circle = Point(candidate_center).buffer(r, resolution=32)
|
594 |
-
|
595 |
-
# Must overlap ≥30% with this polygon
|
596 |
-
try:
|
597 |
-
inter_area = tool_polygon.intersection(candidate_circle).area
|
598 |
-
except Exception:
|
599 |
-
continue
|
600 |
-
|
601 |
-
if inter_area < 0.3 * candidate_circle.area:
|
602 |
-
continue
|
603 |
-
|
604 |
-
# Must not intersect other polygons
|
605 |
-
invalid = False
|
606 |
-
for other_poly in all_polygons:
|
607 |
-
if other_poly.equals(tool_polygon):
|
608 |
-
continue
|
609 |
-
if other_poly.buffer(min_gap).intersects(candidate_circle) or \
|
610 |
-
other_poly.buffer(min_gap).touches(candidate_circle):
|
611 |
-
invalid = True
|
612 |
-
break
|
613 |
-
if invalid:
|
614 |
-
continue
|
615 |
-
|
616 |
-
# Union and return
|
617 |
-
try:
|
618 |
-
union_poly = tool_polygon.union(candidate_circle)
|
619 |
-
if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
|
620 |
-
continue
|
621 |
-
if union_poly.equals(tool_polygon):
|
622 |
-
continue
|
623 |
-
except Exception:
|
624 |
-
continue
|
625 |
-
|
626 |
-
existing_centers.append(candidate_center)
|
627 |
-
logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
|
628 |
-
return union_poly, candidate_center
|
629 |
-
|
630 |
-
attempts += 1
|
631 |
-
if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
|
632 |
-
logger.warning(f"Approaching timeout (attempt {attempts})")
|
633 |
-
return fallback_solution()
|
634 |
-
|
635 |
-
logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
|
636 |
-
return fallback_solution()
|
637 |
-
|
638 |
-
except Exception as e:
|
639 |
-
logger.error(f"Error in place_finger_cut_adjusted: {e}")
|
640 |
-
return fallback_solution()
|
641 |
-
|
642 |
-
def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
|
643 |
-
"""Extract outlines from binary image"""
|
644 |
-
contours, _ = cv2.findContours(
|
645 |
-
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
646 |
-
)
|
647 |
-
outline_image = np.full_like(binary_image, 255)
|
648 |
-
return outline_image, contours
|
649 |
-
|
650 |
-
def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
|
651 |
-
"""Round mask edges using contour smoothing"""
|
652 |
-
if radius_mm <= 0 or scaling_factor <= 0:
|
653 |
-
return mask
|
654 |
-
|
655 |
-
radius_px = max(1, int(radius_mm / scaling_factor))
|
656 |
-
|
657 |
-
if np.count_nonzero(mask) < 500:
|
658 |
-
return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
|
659 |
-
|
660 |
-
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
661 |
-
contours = [c for c in contours if cv2.contourArea(c) > 100]
|
662 |
-
smoothed_contours = []
|
663 |
-
|
664 |
-
for contour in contours:
|
665 |
-
try:
|
666 |
-
resampled = resample_contour(contour, radius_px)
|
667 |
-
resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
|
668 |
-
smoothed_contours.append(resampled)
|
669 |
-
except Exception as e:
|
670 |
-
logger.warning(f"Error smoothing contour: {e}")
|
671 |
-
smoothed_contours.append(contour)
|
672 |
-
|
673 |
-
rounded = np.zeros_like(mask)
|
674 |
-
cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
|
675 |
-
|
676 |
-
return rounded
|
677 |
-
|
678 |
-
def cleanup_memory():
|
679 |
-
"""Clean up memory after processing"""
|
680 |
-
if torch.cuda.is_available():
|
681 |
-
torch.cuda.empty_cache()
|
682 |
-
gc.collect()
|
683 |
-
logger.info("Memory cleanup completed")
|
684 |
-
|
685 |
-
def cleanup_models():
|
686 |
-
"""Unload models to free memory"""
|
687 |
-
global paper_detector_global, u2net_global, birefnet
|
688 |
-
if paper_detector_global is not None:
|
689 |
-
del paper_detector_global
|
690 |
-
paper_detector_global = None
|
691 |
-
if u2net_global is not None:
|
692 |
-
del u2net_global
|
693 |
-
u2net_global = None
|
694 |
-
if birefnet is not None:
|
695 |
-
del birefnet
|
696 |
-
birefnet = None
|
697 |
-
cleanup_memory()
|
698 |
-
|
699 |
-
def make_square(img: np.ndarray):
|
700 |
-
"""Make the image square by padding"""
|
701 |
-
height, width = img.shape[:2]
|
702 |
-
max_dim = max(height, width)
|
703 |
-
|
704 |
-
pad_height = (max_dim - height) // 2
|
705 |
-
pad_width = (max_dim - width) // 2
|
706 |
-
|
707 |
-
pad_height_extra = max_dim - height - 2 * pad_height
|
708 |
-
pad_width_extra = max_dim - width - 2 * pad_width
|
709 |
-
|
710 |
-
if len(img.shape) == 3:
|
711 |
-
padded = np.pad(
|
712 |
-
img,
|
713 |
-
(
|
714 |
-
(pad_height, pad_height + pad_height_extra),
|
715 |
-
(pad_width, pad_width + pad_width_extra),
|
716 |
-
(0, 0),
|
717 |
-
),
|
718 |
-
mode="edge",
|
719 |
-
)
|
720 |
-
else:
|
721 |
-
padded = np.pad(
|
722 |
-
img,
|
723 |
-
(
|
724 |
-
(pad_height, pad_height + pad_height_extra),
|
725 |
-
(pad_width, pad_width + pad_width_extra),
|
726 |
-
),
|
727 |
-
mode="edge",
|
728 |
-
)
|
729 |
-
|
730 |
-
return padded
|
731 |
-
|
732 |
-
def predict_with_paper(image, paper_size, offset, offset_unit, edge_radius, finger_clearance=False):
|
733 |
-
"""Main prediction function using paper as reference"""
|
734 |
-
|
735 |
-
if offset_unit == "inches":
|
736 |
-
offset *= 25.4
|
737 |
-
|
738 |
-
if edge_radius is None or edge_radius == 0:
|
739 |
-
edge_radius = 0.0001
|
740 |
-
|
741 |
-
if offset < 0:
|
742 |
-
raise gr.Error("Offset Value Can't be negative")
|
743 |
-
|
744 |
-
try:
|
745 |
-
# Detect paper bounds and calculate scaling factor
|
746 |
-
paper_contour, scaling_factor = detect_paper_bounds(image, paper_size)
|
747 |
-
logger.info(f"Paper detected with scaling factor: {scaling_factor:.4f} mm/px")
|
748 |
-
|
749 |
-
except PaperNotDetectedError as e:
|
750 |
-
return (
|
751 |
-
None, None, None, None,
|
752 |
-
f"Error: {str(e)}"
|
753 |
-
)
|
754 |
-
except Exception as e:
|
755 |
-
raise gr.Error(f"Error processing image: {str(e)}")
|
756 |
-
|
757 |
-
try:
|
758 |
-
# Remove background from main objects
|
759 |
-
orig_size = image.shape[:2]
|
760 |
-
objects_mask = remove_bg(image)
|
761 |
-
processed_size = objects_mask.shape[:2]
|
762 |
-
|
763 |
-
# Resize mask to match original image
|
764 |
-
objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0]))
|
765 |
-
|
766 |
-
# Remove paper area from mask to focus only on objects
|
767 |
-
objects_mask = exclude_paper_area(objects_mask, paper_contour)
|
768 |
-
|
769 |
-
# Validate single object
|
770 |
-
validate_single_object(objects_mask, paper_contour)
|
771 |
-
|
772 |
-
except (MultipleObjectsError, NoObjectDetectedError) as e:
|
773 |
-
return (
|
774 |
-
None, None, None, None,
|
775 |
-
f"Error: {str(e)}"
|
776 |
-
)
|
777 |
-
except Exception as e:
|
778 |
-
raise gr.Error(f"Error in object detection: {str(e)}")
|
779 |
-
|
780 |
-
# Apply edge rounding if specified
|
781 |
-
if edge_radius > 0:
|
782 |
-
rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
783 |
-
else:
|
784 |
-
rounded_mask = objects_mask.copy()
|
785 |
-
|
786 |
-
# Apply dilation for offset
|
787 |
-
if offset > 0:
|
788 |
-
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
789 |
-
kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
790 |
-
dilated_mask = cv2.dilate(rounded_mask, kernel)
|
791 |
-
else:
|
792 |
-
dilated_mask = rounded_mask.copy()
|
793 |
-
|
794 |
-
# Save original dilated mask for output
|
795 |
-
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
796 |
-
dilated_mask_orig = dilated_mask.copy()
|
797 |
-
|
798 |
-
# Extract contours
|
799 |
-
outlines, contours = extract_outlines(dilated_mask)
|
800 |
-
|
801 |
-
try:
|
802 |
-
# Generate DXF
|
803 |
-
dxf, finger_polygons, original_polygons = save_dxf_spline(
|
804 |
-
contours,
|
805 |
-
scaling_factor,
|
806 |
-
processed_size[0],
|
807 |
-
finger_clearance=(finger_clearance == "On")
|
808 |
-
)
|
809 |
-
except FingerCutOverlapError as e:
|
810 |
-
raise gr.Error(str(e))
|
811 |
-
|
812 |
-
# Create annotated image
|
813 |
-
shrunked_img_contours = image.copy()
|
814 |
-
|
815 |
-
if finger_clearance == "On":
|
816 |
-
outlines = np.full_like(dilated_mask, 255)
|
817 |
-
for poly in finger_polygons:
|
818 |
-
try:
|
819 |
-
coords = np.array([
|
820 |
-
(int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
|
821 |
-
for x, y in poly.exterior.coords
|
822 |
-
], np.int32).reshape((-1, 1, 2))
|
823 |
-
|
824 |
-
cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
|
825 |
-
cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
|
826 |
-
except Exception as e:
|
827 |
-
logger.warning(f"Failed to draw finger cut: {e}")
|
828 |
-
continue
|
829 |
-
else:
|
830 |
-
outlines = np.full_like(dilated_mask, 255)
|
831 |
-
cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
|
832 |
-
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
833 |
-
|
834 |
-
# Draw paper bounds on annotated image
|
835 |
-
cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3)
|
836 |
-
|
837 |
-
# Add paper size text
|
838 |
-
paper_text = f"Paper: {paper_size}"
|
839 |
-
cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
840 |
-
|
841 |
-
cleanup_models()
|
842 |
-
|
843 |
-
return (
|
844 |
-
shrunked_img_contours,
|
845 |
-
outlines,
|
846 |
-
dxf,
|
847 |
-
dilated_mask_orig,
|
848 |
-
f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}"
|
849 |
-
)
|
850 |
-
|
851 |
-
def predict_full_paper(image, paper_size, enable_fillet, fillet_value_mm, enable_finger_cut, selected_outputs):
|
852 |
-
"""
|
853 |
-
Full prediction function with paper reference and flexible outputs
|
854 |
-
Returns DXF + conditionally selected additional outputs
|
855 |
-
"""
|
856 |
-
radius = fillet_value_mm if enable_fillet == "On" else 0
|
857 |
-
finger_flag = "On" if enable_finger_cut == "On" else "Off"
|
858 |
-
|
859 |
-
# Always get all outputs from predict_with_paper
|
860 |
-
ann, outlines, dxf_path, mask, scale_info = predict_with_paper(
|
861 |
-
image,
|
862 |
-
paper_size,
|
863 |
-
offset=0, # No offset for now, can be added as parameter later
|
864 |
-
offset_unit="mm",
|
865 |
-
edge_radius=radius,
|
866 |
-
finger_clearance=finger_flag,
|
867 |
-
)
|
868 |
-
|
869 |
-
# Return based on selected outputs
|
870 |
-
return (
|
871 |
-
dxf_path, # Always return DXF
|
872 |
-
ann if "Annotated Image" in selected_outputs else None,
|
873 |
-
outlines if "Outlines" in selected_outputs else None,
|
874 |
-
mask if "Mask" in selected_outputs else None,
|
875 |
-
scale_info # Always return scaling info
|
876 |
-
)
|
877 |
-
|
878 |
-
# Gradio Interface
|
879 |
-
if __name__ == "__main__":
|
880 |
-
os.makedirs("./outputs", exist_ok=True)
|
881 |
-
|
882 |
-
with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
|
883 |
-
gr.Markdown("""
|
884 |
-
# Paper-Based DXF Generator
|
885 |
-
|
886 |
-
Upload an image with a single object placed on paper (A4, A3, or US Letter).
|
887 |
-
The paper serves as a size reference for accurate DXF generation.
|
888 |
-
|
889 |
-
**Instructions:**
|
890 |
-
1. Place a single object on paper
|
891 |
-
2. Select the correct paper size
|
892 |
-
3. Configure options as needed
|
893 |
-
4. Click Submit to generate DXF
|
894 |
-
""")
|
895 |
-
|
896 |
-
with gr.Row():
|
897 |
-
with gr.Column():
|
898 |
-
input_image = gr.Image(
|
899 |
-
label="Input Image (Object on Paper)",
|
900 |
-
type="numpy",
|
901 |
-
height=400
|
902 |
-
)
|
903 |
-
|
904 |
-
paper_size = gr.Radio(
|
905 |
-
choices=["A4", "A3", "US Letter"],
|
906 |
-
value="A4",
|
907 |
-
label="Paper Size",
|
908 |
-
info="Select the paper size used in your image"
|
909 |
-
)
|
910 |
-
|
911 |
-
with gr.Group():
|
912 |
-
gr.Markdown("### Edge Rounding")
|
913 |
-
enable_fillet = gr.Radio(
|
914 |
-
choices=["On", "Off"],
|
915 |
-
value="Off",
|
916 |
-
label="Enable Edge Rounding",
|
917 |
-
interactive=True
|
918 |
-
)
|
919 |
-
|
920 |
-
fillet_value_mm = gr.Slider(
|
921 |
-
minimum=0,
|
922 |
-
maximum=20,
|
923 |
-
step=1,
|
924 |
-
value=5,
|
925 |
-
label="Edge Radius (mm)",
|
926 |
-
visible=False,
|
927 |
-
interactive=True
|
928 |
-
)
|
929 |
-
|
930 |
-
with gr.Group():
|
931 |
-
gr.Markdown("### Finger Cuts")
|
932 |
-
enable_finger_cut = gr.Radio(
|
933 |
-
choices=["On", "Off"],
|
934 |
-
value="Off",
|
935 |
-
label="Enable Finger Cuts",
|
936 |
-
info="Add circular cuts for easier handling"
|
937 |
-
)
|
938 |
-
|
939 |
-
output_options = gr.CheckboxGroup(
|
940 |
-
choices=["Annotated Image", "Outlines", "Mask"],
|
941 |
-
value=[],
|
942 |
-
label="Additional Outputs",
|
943 |
-
info="DXF is always included"
|
944 |
-
)
|
945 |
-
|
946 |
-
submit_btn = gr.Button("Generate DXF", variant="primary", size="lg")
|
947 |
-
|
948 |
-
with gr.Column():
|
949 |
-
with gr.Group():
|
950 |
-
gr.Markdown("### Generated Files")
|
951 |
-
dxf_file = gr.File(label="DXF File", file_types=[".dxf"])
|
952 |
-
scale_info = gr.Textbox(label="Scaling Information", interactive=False)
|
953 |
-
|
954 |
-
with gr.Group():
|
955 |
-
gr.Markdown("### Preview Images")
|
956 |
-
output_image = gr.Image(label="Annotated Image", visible=False)
|
957 |
-
outlines_image = gr.Image(label="Outlines", visible=False)
|
958 |
-
mask_image = gr.Image(label="Mask", visible=False)
|
959 |
-
|
960 |
-
# Dynamic visibility updates
|
961 |
-
def toggle_fillet(choice):
|
962 |
-
return gr.update(visible=(choice == "On"))
|
963 |
-
|
964 |
-
def update_outputs_visibility(selected):
|
965 |
-
return [
|
966 |
-
gr.update(visible="Annotated Image" in selected),
|
967 |
-
gr.update(visible="Outlines" in selected),
|
968 |
-
gr.update(visible="Mask" in selected)
|
969 |
-
]
|
970 |
-
|
971 |
-
# Event handlers
|
972 |
-
enable_fillet.change(
|
973 |
-
fn=toggle_fillet,
|
974 |
-
inputs=enable_fillet,
|
975 |
-
outputs=fillet_value_mm
|
976 |
-
)
|
977 |
-
|
978 |
-
output_options.change(
|
979 |
-
fn=update_outputs_visibility,
|
980 |
-
inputs=output_options,
|
981 |
-
outputs=[output_image, outlines_image, mask_image]
|
982 |
-
)
|
983 |
-
|
984 |
-
submit_btn.click(
|
985 |
-
fn=predict_full_paper,
|
986 |
-
inputs=[
|
987 |
-
input_image,
|
988 |
-
paper_size,
|
989 |
-
enable_fillet,
|
990 |
-
fillet_value_mm,
|
991 |
-
enable_finger_cut,
|
992 |
-
output_options
|
993 |
-
],
|
994 |
-
outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
|
995 |
-
)
|
996 |
-
|
997 |
-
# Example gallery
|
998 |
-
with gr.Row():
|
999 |
-
gr.Markdown("""
|
1000 |
-
### Tips for Best Results:
|
1001 |
-
- Ensure good lighting and clear paper edges
|
1002 |
-
- Place object completely on the paper
|
1003 |
-
- Avoid shadows that might interfere with detection
|
1004 |
-
- Use high contrast between object and paper
|
1005 |
-
""")
|
1006 |
-
|
1007 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|