Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,8 @@ import cv2
|
|
14 |
import ezdxf
|
15 |
import gradio as gr
|
16 |
import gc
|
17 |
-
from scalingtestupdated import calculate_scaling_factor
|
|
|
18 |
from scipy.interpolate import splprep, splev
|
19 |
from scipy.ndimage import gaussian_filter1d
|
20 |
import json
|
@@ -153,7 +154,77 @@ def get_birefnet():
|
|
153 |
logger.info("BiRefNet model loaded successfully")
|
154 |
return birefnet
|
155 |
|
156 |
-
def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
"""
|
158 |
Detect paper in the image using contour detection as fallback
|
159 |
Returns the paper contour and estimated scaling factor
|
@@ -209,7 +280,7 @@ def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
|
|
209 |
rect_area = w * h
|
210 |
if rect_area > 0:
|
211 |
extent = area / rect_area
|
212 |
-
if extent > 0.85: # At least
|
213 |
paper_contours.append((contour, area, aspect_ratio, extent))
|
214 |
|
215 |
if not paper_contours:
|
@@ -222,9 +293,10 @@ def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
|
|
222 |
|
223 |
logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}")
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
228 |
"""
|
229 |
Detect paper bounds in the image and calculate scaling factor
|
230 |
"""
|
@@ -233,23 +305,22 @@ def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray,
|
|
233 |
|
234 |
if paper_detector is not None:
|
235 |
# Use trained model if available
|
236 |
-
|
237 |
-
results = paper_detector.predict(image, conf=0.8, verbose=False) # Lower confidence threshold
|
238 |
|
239 |
if not results or len(results) == 0:
|
240 |
logger.warning("No results from paper detector")
|
241 |
-
return detect_paper_contour(image)
|
242 |
|
243 |
# Check if boxes exist and are not empty
|
244 |
if not hasattr(results[0], 'boxes') or results[0].boxes is None or len(results[0].boxes) == 0:
|
245 |
logger.warning("No boxes detected by model, using fallback contour detection")
|
246 |
-
return detect_paper_contour(image)
|
247 |
|
248 |
# Get the largest detected paper
|
249 |
-
boxes = results[0].boxes.xyxy.cpu().numpy()
|
250 |
if len(boxes) == 0:
|
251 |
logger.warning("Empty boxes detected, using fallback")
|
252 |
-
return detect_paper_contour(image)
|
253 |
|
254 |
largest_box = None
|
255 |
max_area = 0
|
@@ -263,7 +334,7 @@ def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray,
|
|
263 |
|
264 |
if largest_box is None:
|
265 |
logger.warning("No valid paper box found, using fallback")
|
266 |
-
return detect_paper_contour(image)
|
267 |
|
268 |
# Convert box to contour-like format
|
269 |
x_min, y_min, x_max, y_max = map(int, largest_box)
|
@@ -279,45 +350,120 @@ def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray,
|
|
279 |
else:
|
280 |
# Use fallback contour detection
|
281 |
logger.info("Using fallback contour detection for paper")
|
282 |
-
paper_contour, _ = detect_paper_contour(image)
|
283 |
|
284 |
-
# Calculate scaling factor based on paper size
|
285 |
-
scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size)
|
286 |
|
287 |
return paper_contour, scaling_factor
|
288 |
|
289 |
except Exception as e:
|
290 |
logger.error(f"Error in paper detection: {e}")
|
291 |
-
# Instead of raising PaperNotDetectedError, raise ReferenceBoxNotDetectedError
|
292 |
raise ReferenceBoxNotDetectedError(f"Failed to detect paper: {str(e)}")
|
293 |
|
294 |
-
def
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
|
316 |
-
|
317 |
-
|
318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
return scaling_factor
|
320 |
|
|
|
321 |
def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
|
322 |
"""
|
323 |
Validate that only a single object is present on the paper
|
@@ -524,35 +670,83 @@ def resample_contour(contour, edge_radius_px: int = 0):
|
|
524 |
logger.error(f"Error in resample_contour: {e}")
|
525 |
raise
|
526 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
527 |
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
528 |
-
"""Save contours as DXF splines with optional finger cuts"""
|
529 |
doc = ezdxf.new(units=ezdxf.units.MM)
|
530 |
doc.header["$INSUNITS"] = ezdxf.units.MM
|
531 |
msp = doc.modelspace()
|
532 |
-
|
533 |
finger_centers = []
|
534 |
original_polygons = []
|
535 |
|
536 |
-
# Scale correction factor
|
537 |
-
scale_correction = 1.0
|
538 |
-
|
539 |
for contour in inflated_contours:
|
540 |
try:
|
541 |
resampled_contour = resample_contour(contour)
|
542 |
|
543 |
-
|
544 |
-
|
|
|
545 |
|
546 |
-
if len(
|
547 |
continue
|
548 |
|
549 |
-
tool_polygon = build_tool_polygon(
|
550 |
original_polygons.append(tool_polygon)
|
551 |
|
552 |
if finger_clearance:
|
553 |
try:
|
554 |
tool_polygon, center = place_finger_cut_adjusted(
|
555 |
-
tool_polygon,
|
556 |
)
|
557 |
except FingerCutOverlapError:
|
558 |
tool_polygon = original_polygons[-1]
|
@@ -561,18 +755,16 @@ def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=
|
|
561 |
if len(exterior_coords) < 3:
|
562 |
continue
|
563 |
|
564 |
-
#
|
565 |
-
|
566 |
-
|
567 |
-
msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
568 |
-
final_polygons_inch.append(tool_polygon)
|
569 |
|
570 |
except ValueError as e:
|
571 |
logger.warning(f"Skipping contour: {e}")
|
572 |
|
573 |
dxf_filepath = os.path.join("./outputs", "out.dxf")
|
574 |
doc.saveas(dxf_filepath)
|
575 |
-
return dxf_filepath,
|
576 |
|
577 |
def build_tool_polygon(points_inch):
|
578 |
"""Build a polygon from inch-converted points"""
|
@@ -866,14 +1058,152 @@ def make_square(img: np.ndarray):
|
|
866 |
|
867 |
return padded
|
868 |
|
869 |
-
def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
870 |
"""Main prediction function using paper as reference"""
|
871 |
|
872 |
logger.info(f"Starting prediction with image shape: {image.shape}")
|
873 |
-
logger.info(f"Paper size: {paper_size}")
|
874 |
|
|
|
875 |
if offset_unit == "inches":
|
876 |
-
offset_mm = offset
|
877 |
else:
|
878 |
offset_mm = offset
|
879 |
|
@@ -885,10 +1215,10 @@ def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=F
|
|
885 |
raise gr.Error("Offset Value Can't be negative")
|
886 |
|
887 |
try:
|
888 |
-
# Detect paper bounds and calculate scaling factor
|
889 |
logger.info("Starting paper detection...")
|
890 |
-
paper_contour, scaling_factor = detect_paper_bounds(image, paper_size)
|
891 |
-
logger.info(f"Paper detected successfully with scaling factor: {scaling_factor:.
|
892 |
|
893 |
except ReferenceBoxNotDetectedError as e:
|
894 |
logger.error(f"Paper detection failed: {e}")
|
@@ -900,11 +1230,10 @@ def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=F
|
|
900 |
logger.error(f"Unexpected error in paper detection: {e}")
|
901 |
raise gr.Error(f"Error processing image: {str(e)}")
|
902 |
|
|
|
|
|
|
|
903 |
try:
|
904 |
-
# Remove background from main objects
|
905 |
-
# orig_size = image.shape[:2]
|
906 |
-
# objects_mask = remove_bg(image)
|
907 |
-
|
908 |
# Mask paper area in input image first
|
909 |
masked_input_image = mask_paper_area_in_image(image, paper_contour)
|
910 |
|
@@ -938,14 +1267,16 @@ def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=F
|
|
938 |
# Apply edge rounding if specified
|
939 |
rounded_mask = objects_mask.copy()
|
940 |
|
941 |
-
# Apply dilation for offset - more precise calculation
|
942 |
if offset_mm > 0:
|
943 |
-
offset_pixels = int(round(float(offset_mm) / scaling_factor))
|
944 |
if offset_pixels > 0:
|
945 |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (offset_pixels*2+1, offset_pixels*2+1))
|
946 |
dilated_mask = cv2.dilate(rounded_mask, kernel, iterations=1)
|
947 |
else:
|
948 |
dilated_mask = rounded_mask.copy()
|
|
|
|
|
949 |
|
950 |
# Save original dilated mask for output
|
951 |
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
@@ -955,10 +1286,10 @@ def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=F
|
|
955 |
outlines, contours = extract_outlines(dilated_mask)
|
956 |
|
957 |
try:
|
958 |
-
# Generate DXF
|
959 |
dxf, finger_polygons, original_polygons = save_dxf_spline(
|
960 |
contours,
|
961 |
-
scaling_factor,
|
962 |
processed_size[0],
|
963 |
finger_clearance=(finger_clearance == "On")
|
964 |
)
|
@@ -987,21 +1318,22 @@ def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=F
|
|
987 |
cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
|
988 |
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
989 |
|
990 |
-
# # Draw paper bounds on annotated image
|
991 |
-
# cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3)
|
992 |
-
|
993 |
-
# # Add paper size text
|
994 |
-
# paper_text = f"Paper: {paper_size}"
|
995 |
-
# cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
996 |
-
|
997 |
cleanup_models()
|
998 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
999 |
return (
|
1000 |
shrunked_img_contours,
|
1001 |
outlines,
|
1002 |
dxf,
|
1003 |
dilated_mask_orig,
|
1004 |
-
|
1005 |
)
|
1006 |
|
1007 |
def predict_full_paper(image, paper_size, offset_value_mm,offset_unit, enable_finger_cut, selected_outputs):
|
|
|
14 |
import ezdxf
|
15 |
import gradio as gr
|
16 |
import gc
|
17 |
+
# from scalingtestupdated import calculate_scaling_factor
|
18 |
+
from scalingtestupdated import calculate_scaling_factor_with_units, calculate_paper_scaling_factor, convert_units
|
19 |
from scipy.interpolate import splprep, splev
|
20 |
from scipy.ndimage import gaussian_filter1d
|
21 |
import json
|
|
|
154 |
logger.info("BiRefNet model loaded successfully")
|
155 |
return birefnet
|
156 |
|
157 |
+
# def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
|
158 |
+
# """
|
159 |
+
# Detect paper in the image using contour detection as fallback
|
160 |
+
# Returns the paper contour and estimated scaling factor
|
161 |
+
# """
|
162 |
+
# logger.info("Using contour-based paper detection")
|
163 |
+
|
164 |
+
# # Convert to grayscale
|
165 |
+
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
166 |
+
|
167 |
+
# # Apply bilateral filter to reduce noise while preserving edges
|
168 |
+
# filtered = cv2.bilateralFilter(gray, 9, 75, 75)
|
169 |
+
|
170 |
+
# # Apply adaptive threshold
|
171 |
+
# thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
172 |
+
# cv2.THRESH_BINARY, 11, 2)
|
173 |
+
|
174 |
+
# # Edge detection with multiple thresholds
|
175 |
+
# edges1 = cv2.Canny(filtered, 50, 150)
|
176 |
+
# edges2 = cv2.Canny(filtered, 30, 100)
|
177 |
+
# edges = cv2.bitwise_or(edges1, edges2)
|
178 |
+
|
179 |
+
# # Morphological operations to connect broken edges
|
180 |
+
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
181 |
+
# edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
|
182 |
+
|
183 |
+
# # Find contours
|
184 |
+
# contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
185 |
+
|
186 |
+
# # Filter contours by area and aspect ratio to find paper-like rectangles
|
187 |
+
# paper_contours = []
|
188 |
+
# image_area = image.shape[0] * image.shape[1]
|
189 |
+
# min_area = image_area * 0.20 # At least 15% of image
|
190 |
+
# max_area = image_area * 0.85 # At most 95% of image
|
191 |
+
|
192 |
+
# for contour in contours:
|
193 |
+
# area = cv2.contourArea(contour)
|
194 |
+
# if min_area < area < max_area:
|
195 |
+
# # Approximate contour to polygon
|
196 |
+
# epsilon = 0.015 * cv2.arcLength(contour, True)
|
197 |
+
# approx = cv2.approxPolyDP(contour, epsilon, True)
|
198 |
+
|
199 |
+
# # Check if it's roughly rectangular (4 corners) or close to it
|
200 |
+
# if len(approx) >= 4:
|
201 |
+
# # Calculate bounding rectangle
|
202 |
+
# rect = cv2.boundingRect(approx)
|
203 |
+
# w, h = rect[2], rect[3]
|
204 |
+
# aspect_ratio = w / h if h > 0 else 0
|
205 |
+
|
206 |
+
# # Check if aspect ratio matches common paper ratios
|
207 |
+
# # A4: 1.414, A3: 1.414, US Letter: 1.294
|
208 |
+
# if 1.3 < aspect_ratio < 1.5: # More lenient tolerance
|
209 |
+
# # Check if contour area is close to bounding rect area (rectangularity)
|
210 |
+
# rect_area = w * h
|
211 |
+
# if rect_area > 0:
|
212 |
+
# extent = area / rect_area
|
213 |
+
# if extent > 0.85: # At least 70% rectangular
|
214 |
+
# paper_contours.append((contour, area, aspect_ratio, extent))
|
215 |
+
|
216 |
+
# if not paper_contours:
|
217 |
+
# logger.error("No paper-like contours found")
|
218 |
+
# raise ReferenceBoxNotDetectedError("Could not detect paper in the image using contour detection")
|
219 |
+
|
220 |
+
# # Select the best paper contour based on area and rectangularity
|
221 |
+
# paper_contours.sort(key=lambda x: (x[1] * x[3]), reverse=True) # Sort by area * extent
|
222 |
+
# best_contour = paper_contours[0][0]
|
223 |
+
|
224 |
+
# logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}")
|
225 |
+
|
226 |
+
# return best_contour, 0.0 # Return 0.0 as placeholder scaling factor
|
227 |
+
def detect_paper_contour(image: np.ndarray, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
|
228 |
"""
|
229 |
Detect paper in the image using contour detection as fallback
|
230 |
Returns the paper contour and estimated scaling factor
|
|
|
280 |
rect_area = w * h
|
281 |
if rect_area > 0:
|
282 |
extent = area / rect_area
|
283 |
+
if extent > 0.85: # At least 85% rectangular
|
284 |
paper_contours.append((contour, area, aspect_ratio, extent))
|
285 |
|
286 |
if not paper_contours:
|
|
|
293 |
|
294 |
logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}")
|
295 |
|
296 |
+
# Return 0.0 as placeholder - will be calculated later based on paper size
|
297 |
+
return best_contour, 0.0
|
298 |
+
|
299 |
+
def detect_paper_bounds(image: np.ndarray, paper_size: str, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
|
300 |
"""
|
301 |
Detect paper bounds in the image and calculate scaling factor
|
302 |
"""
|
|
|
305 |
|
306 |
if paper_detector is not None:
|
307 |
# Use trained model if available
|
308 |
+
results = paper_detector.predict(image, conf=0.8, verbose=False)
|
|
|
309 |
|
310 |
if not results or len(results) == 0:
|
311 |
logger.warning("No results from paper detector")
|
312 |
+
return detect_paper_contour(image, output_unit)
|
313 |
|
314 |
# Check if boxes exist and are not empty
|
315 |
if not hasattr(results[0], 'boxes') or results[0].boxes is None or len(results[0].boxes) == 0:
|
316 |
logger.warning("No boxes detected by model, using fallback contour detection")
|
317 |
+
return detect_paper_contour(image, output_unit)
|
318 |
|
319 |
# Get the largest detected paper
|
320 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
321 |
if len(boxes) == 0:
|
322 |
logger.warning("Empty boxes detected, using fallback")
|
323 |
+
return detect_paper_contour(image, output_unit)
|
324 |
|
325 |
largest_box = None
|
326 |
max_area = 0
|
|
|
334 |
|
335 |
if largest_box is None:
|
336 |
logger.warning("No valid paper box found, using fallback")
|
337 |
+
return detect_paper_contour(image, output_unit)
|
338 |
|
339 |
# Convert box to contour-like format
|
340 |
x_min, y_min, x_max, y_max = map(int, largest_box)
|
|
|
350 |
else:
|
351 |
# Use fallback contour detection
|
352 |
logger.info("Using fallback contour detection for paper")
|
353 |
+
paper_contour, _ = detect_paper_contour(image, output_unit)
|
354 |
|
355 |
+
# Calculate scaling factor based on paper size with proper units
|
356 |
+
scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size, output_unit)
|
357 |
|
358 |
return paper_contour, scaling_factor
|
359 |
|
360 |
except Exception as e:
|
361 |
logger.error(f"Error in paper detection: {e}")
|
|
|
362 |
raise ReferenceBoxNotDetectedError(f"Failed to detect paper: {str(e)}")
|
363 |
|
364 |
+
# def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]:
|
365 |
+
# """
|
366 |
+
# Detect paper bounds in the image and calculate scaling factor
|
367 |
+
# """
|
368 |
+
# try:
|
369 |
+
# paper_detector = get_paper_detector()
|
370 |
+
|
371 |
+
# if paper_detector is not None:
|
372 |
+
# # Use trained model if available
|
373 |
+
# # FIXED: Add verbose=False to suppress prints, and use proper confidence threshold
|
374 |
+
# results = paper_detector.predict(image, conf=0.8, verbose=False) # Lower confidence threshold
|
375 |
+
|
376 |
+
# if not results or len(results) == 0:
|
377 |
+
# logger.warning("No results from paper detector")
|
378 |
+
# return detect_paper_contour(image)
|
379 |
+
|
380 |
+
# # Check if boxes exist and are not empty
|
381 |
+
# if not hasattr(results[0], 'boxes') or results[0].boxes is None or len(results[0].boxes) == 0:
|
382 |
+
# logger.warning("No boxes detected by model, using fallback contour detection")
|
383 |
+
# return detect_paper_contour(image)
|
384 |
+
|
385 |
+
# # Get the largest detected paper
|
386 |
+
# boxes = results[0].boxes.xyxy.cpu().numpy() # Convert to numpy
|
387 |
+
# if len(boxes) == 0:
|
388 |
+
# logger.warning("Empty boxes detected, using fallback")
|
389 |
+
# return detect_paper_contour(image)
|
390 |
+
|
391 |
+
# largest_box = None
|
392 |
+
# max_area = 0
|
393 |
+
|
394 |
+
# for box in boxes:
|
395 |
+
# x_min, y_min, x_max, y_max = box
|
396 |
+
# area = (x_max - x_min) * (y_max - y_min)
|
397 |
+
# if area > max_area:
|
398 |
+
# max_area = area
|
399 |
+
# largest_box = box
|
400 |
+
|
401 |
+
# if largest_box is None:
|
402 |
+
# logger.warning("No valid paper box found, using fallback")
|
403 |
+
# return detect_paper_contour(image)
|
404 |
+
|
405 |
+
# # Convert box to contour-like format
|
406 |
+
# x_min, y_min, x_max, y_max = map(int, largest_box)
|
407 |
+
# paper_contour = np.array([
|
408 |
+
# [[x_min, y_min]],
|
409 |
+
# [[x_max, y_min]],
|
410 |
+
# [[x_max, y_max]],
|
411 |
+
# [[x_min, y_max]]
|
412 |
+
# ])
|
413 |
+
|
414 |
+
# logger.info(f"Paper detected by model: {x_min},{y_min} to {x_max},{y_max}")
|
415 |
+
|
416 |
+
# else:
|
417 |
+
# # Use fallback contour detection
|
418 |
+
# logger.info("Using fallback contour detection for paper")
|
419 |
+
# paper_contour, _ = detect_paper_contour(image)
|
420 |
+
|
421 |
+
# # Calculate scaling factor based on paper size
|
422 |
+
# scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size)
|
423 |
+
|
424 |
+
# return paper_contour, scaling_factor
|
425 |
+
|
426 |
+
# except Exception as e:
|
427 |
+
# logger.error(f"Error in paper detection: {e}")
|
428 |
+
# # Instead of raising PaperNotDetectedError, raise ReferenceBoxNotDetectedError
|
429 |
+
# raise ReferenceBoxNotDetectedError(f"Failed to detect paper: {str(e)}")
|
430 |
+
|
431 |
+
# def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float:
|
432 |
+
# """
|
433 |
+
# Calculate scaling factor based on detected paper dimensions
|
434 |
+
# """
|
435 |
+
# # Get paper dimensions
|
436 |
+
# paper_dims = PAPER_SIZES[paper_size]
|
437 |
+
# expected_width_mm = paper_dims["width"]
|
438 |
+
# expected_height_mm = paper_dims["height"]
|
439 |
|
440 |
+
# # Calculate bounding rectangle of paper contour
|
441 |
+
# rect = cv2.boundingRect(paper_contour)
|
442 |
+
# detected_width_px = rect[2]
|
443 |
+
# detected_height_px = rect[3]
|
444 |
|
445 |
+
# # Calculate scaling factors for both dimensions
|
446 |
+
# scale_x = expected_width_mm / detected_width_px
|
447 |
+
# scale_y = expected_height_mm / detected_height_px
|
448 |
|
449 |
+
# # Use average of both scales
|
450 |
+
# # scaling_factor = (scale_x + scale_y) / 2
|
451 |
+
# scaling_factor = min(scale_x, scale_y)
|
452 |
|
453 |
+
# logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm")
|
454 |
+
# logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px")
|
455 |
|
456 |
+
# return scaling_factor
|
457 |
+
|
458 |
+
def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str, output_unit: str = "mm") -> float:
|
459 |
+
"""
|
460 |
+
Calculate scaling factor based on detected paper dimensions with proper unit handling.
|
461 |
+
"""
|
462 |
+
from scalingtestupdated import calculate_paper_scaling_factor as calc_paper_scale
|
463 |
+
scaling_factor, unit_string = calc_paper_scale(paper_contour, paper_size, output_unit)
|
464 |
return scaling_factor
|
465 |
|
466 |
+
|
467 |
def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
|
468 |
"""
|
469 |
Validate that only a single object is present on the paper
|
|
|
670 |
logger.error(f"Error in resample_contour: {e}")
|
671 |
raise
|
672 |
|
673 |
+
# def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
674 |
+
# """Save contours as DXF splines with optional finger cuts"""
|
675 |
+
# doc = ezdxf.new(units=ezdxf.units.MM)
|
676 |
+
# doc.header["$INSUNITS"] = ezdxf.units.MM
|
677 |
+
# msp = doc.modelspace()
|
678 |
+
# final_polygons_inch = []
|
679 |
+
# finger_centers = []
|
680 |
+
# original_polygons = []
|
681 |
+
|
682 |
+
# # Scale correction factor
|
683 |
+
# scale_correction = 1.0
|
684 |
+
|
685 |
+
# for contour in inflated_contours:
|
686 |
+
# try:
|
687 |
+
# resampled_contour = resample_contour(contour)
|
688 |
+
|
689 |
+
# points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
|
690 |
+
# for x, y in resampled_contour]
|
691 |
+
|
692 |
+
# if len(points_inch) < 3:
|
693 |
+
# continue
|
694 |
+
|
695 |
+
# tool_polygon = build_tool_polygon(points_inch)
|
696 |
+
# original_polygons.append(tool_polygon)
|
697 |
+
|
698 |
+
# if finger_clearance:
|
699 |
+
# try:
|
700 |
+
# tool_polygon, center = place_finger_cut_adjusted(
|
701 |
+
# tool_polygon, points_inch, finger_centers, final_polygons_inch
|
702 |
+
# )
|
703 |
+
# except FingerCutOverlapError:
|
704 |
+
# tool_polygon = original_polygons[-1]
|
705 |
+
|
706 |
+
# exterior_coords = polygon_to_exterior_coords(tool_polygon)
|
707 |
+
# if len(exterior_coords) < 3:
|
708 |
+
# continue
|
709 |
+
|
710 |
+
# # Apply scale correction
|
711 |
+
# corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
|
712 |
+
|
713 |
+
# msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
714 |
+
# final_polygons_inch.append(tool_polygon)
|
715 |
+
|
716 |
+
# except ValueError as e:
|
717 |
+
# logger.warning(f"Skipping contour: {e}")
|
718 |
+
|
719 |
+
# dxf_filepath = os.path.join("./outputs", "out.dxf")
|
720 |
+
# doc.saveas(dxf_filepath)
|
721 |
+
# return dxf_filepath, final_polygons_inch, original_polygons
|
722 |
+
|
723 |
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
724 |
+
"""Save contours as DXF splines with optional finger cuts - scaling_factor should be in mm/px"""
|
725 |
doc = ezdxf.new(units=ezdxf.units.MM)
|
726 |
doc.header["$INSUNITS"] = ezdxf.units.MM
|
727 |
msp = doc.modelspace()
|
728 |
+
final_polygons_mm = [] # Use mm instead of inch for clarity
|
729 |
finger_centers = []
|
730 |
original_polygons = []
|
731 |
|
|
|
|
|
|
|
732 |
for contour in inflated_contours:
|
733 |
try:
|
734 |
resampled_contour = resample_contour(contour)
|
735 |
|
736 |
+
# Convert pixel coordinates to mm using the scaling factor
|
737 |
+
points_mm = [(x * scaling_factor, (height - y) * scaling_factor)
|
738 |
+
for x, y in resampled_contour]
|
739 |
|
740 |
+
if len(points_mm) < 3:
|
741 |
continue
|
742 |
|
743 |
+
tool_polygon = build_tool_polygon(points_mm)
|
744 |
original_polygons.append(tool_polygon)
|
745 |
|
746 |
if finger_clearance:
|
747 |
try:
|
748 |
tool_polygon, center = place_finger_cut_adjusted(
|
749 |
+
tool_polygon, points_mm, finger_centers, final_polygons_mm
|
750 |
)
|
751 |
except FingerCutOverlapError:
|
752 |
tool_polygon = original_polygons[-1]
|
|
|
755 |
if len(exterior_coords) < 3:
|
756 |
continue
|
757 |
|
758 |
+
# Coordinates are already in mm, so add directly to DXF
|
759 |
+
msp.add_spline(exterior_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
760 |
+
final_polygons_mm.append(tool_polygon)
|
|
|
|
|
761 |
|
762 |
except ValueError as e:
|
763 |
logger.warning(f"Skipping contour: {e}")
|
764 |
|
765 |
dxf_filepath = os.path.join("./outputs", "out.dxf")
|
766 |
doc.saveas(dxf_filepath)
|
767 |
+
return dxf_filepath, final_polygons_mm, original_polygons
|
768 |
|
769 |
def build_tool_polygon(points_inch):
|
770 |
"""Build a polygon from inch-converted points"""
|
|
|
1058 |
|
1059 |
return padded
|
1060 |
|
1061 |
+
# def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=False):
|
1062 |
+
# """Main prediction function using paper as reference"""
|
1063 |
+
|
1064 |
+
# logger.info(f"Starting prediction with image shape: {image.shape}")
|
1065 |
+
# logger.info(f"Paper size: {paper_size}")
|
1066 |
+
|
1067 |
+
# if offset_unit == "inches":
|
1068 |
+
# offset_mm = offset * 25.4 # Convert to mm for internal calculations
|
1069 |
+
# else:
|
1070 |
+
# offset_mm = offset
|
1071 |
+
|
1072 |
+
# edge_radius = None
|
1073 |
+
# if edge_radius is None or edge_radius == 0:
|
1074 |
+
# edge_radius = 0.0001
|
1075 |
+
|
1076 |
+
# if offset < 0:
|
1077 |
+
# raise gr.Error("Offset Value Can't be negative")
|
1078 |
+
|
1079 |
+
# try:
|
1080 |
+
# # Detect paper bounds and calculate scaling factor
|
1081 |
+
# logger.info("Starting paper detection...")
|
1082 |
+
# paper_contour, scaling_factor = detect_paper_bounds(image, paper_size)
|
1083 |
+
# logger.info(f"Paper detected successfully with scaling factor: {scaling_factor:.4f} mm/px")
|
1084 |
+
|
1085 |
+
# except ReferenceBoxNotDetectedError as e:
|
1086 |
+
# logger.error(f"Paper detection failed: {e}")
|
1087 |
+
# return (
|
1088 |
+
# None, None, None, None,
|
1089 |
+
# f"Error: {str(e)}"
|
1090 |
+
# )
|
1091 |
+
# except Exception as e:
|
1092 |
+
# logger.error(f"Unexpected error in paper detection: {e}")
|
1093 |
+
# raise gr.Error(f"Error processing image: {str(e)}")
|
1094 |
+
|
1095 |
+
# try:
|
1096 |
+
# # Remove background from main objects
|
1097 |
+
# # orig_size = image.shape[:2]
|
1098 |
+
# # objects_mask = remove_bg(image)
|
1099 |
+
|
1100 |
+
# # Mask paper area in input image first
|
1101 |
+
# masked_input_image = mask_paper_area_in_image(image, paper_contour)
|
1102 |
+
|
1103 |
+
# # Remove background from main objects
|
1104 |
+
# orig_size = image.shape[:2]
|
1105 |
+
# objects_mask = remove_bg(image)
|
1106 |
+
# processed_size = objects_mask.shape[:2]
|
1107 |
+
|
1108 |
+
# # Resize mask to match original image
|
1109 |
+
# objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0]))
|
1110 |
+
|
1111 |
+
# # Remove paper area from mask to focus only on objects
|
1112 |
+
# objects_mask = exclude_paper_area(objects_mask, paper_contour)
|
1113 |
+
|
1114 |
+
# # Check if we actually have object pixels after paper exclusion
|
1115 |
+
# object_pixels = np.count_nonzero(objects_mask)
|
1116 |
+
# if object_pixels < 1000: # Minimum threshold
|
1117 |
+
# raise NoObjectDetectedError("No significant object detected after excluding paper area")
|
1118 |
+
|
1119 |
+
# # Validate single object
|
1120 |
+
# validate_single_object(objects_mask, paper_contour)
|
1121 |
+
|
1122 |
+
# except (MultipleObjectsError, NoObjectDetectedError) as e:
|
1123 |
+
# return (
|
1124 |
+
# None, None, None, None,
|
1125 |
+
# f"Error: {str(e)}"
|
1126 |
+
# )
|
1127 |
+
# except Exception as e:
|
1128 |
+
# raise gr.Error(f"Error in object detection: {str(e)}")
|
1129 |
+
|
1130 |
+
# # Apply edge rounding if specified
|
1131 |
+
# rounded_mask = objects_mask.copy()
|
1132 |
+
|
1133 |
+
# # Apply dilation for offset - more precise calculation
|
1134 |
+
# if offset_mm > 0:
|
1135 |
+
# offset_pixels = int(round(float(offset_mm) / scaling_factor))
|
1136 |
+
# if offset_pixels > 0:
|
1137 |
+
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (offset_pixels*2+1, offset_pixels*2+1))
|
1138 |
+
# dilated_mask = cv2.dilate(rounded_mask, kernel, iterations=1)
|
1139 |
+
# else:
|
1140 |
+
# dilated_mask = rounded_mask.copy()
|
1141 |
+
|
1142 |
+
# # Save original dilated mask for output
|
1143 |
+
# Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
1144 |
+
# dilated_mask_orig = dilated_mask.copy()
|
1145 |
+
|
1146 |
+
# # Extract contours
|
1147 |
+
# outlines, contours = extract_outlines(dilated_mask)
|
1148 |
+
|
1149 |
+
# try:
|
1150 |
+
# # Generate DXF
|
1151 |
+
# dxf, finger_polygons, original_polygons = save_dxf_spline(
|
1152 |
+
# contours,
|
1153 |
+
# scaling_factor,
|
1154 |
+
# processed_size[0],
|
1155 |
+
# finger_clearance=(finger_clearance == "On")
|
1156 |
+
# )
|
1157 |
+
# except FingerCutOverlapError as e:
|
1158 |
+
# raise gr.Error(str(e))
|
1159 |
+
|
1160 |
+
# # Create annotated image
|
1161 |
+
# shrunked_img_contours = image.copy()
|
1162 |
+
|
1163 |
+
# if finger_clearance == "On":
|
1164 |
+
# outlines = np.full_like(dilated_mask, 255)
|
1165 |
+
# for poly in finger_polygons:
|
1166 |
+
# try:
|
1167 |
+
# coords = np.array([
|
1168 |
+
# (int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
|
1169 |
+
# for x, y in poly.exterior.coords
|
1170 |
+
# ], np.int32).reshape((-1, 1, 2))
|
1171 |
+
|
1172 |
+
# cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
|
1173 |
+
# cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
|
1174 |
+
# except Exception as e:
|
1175 |
+
# logger.warning(f"Failed to draw finger cut: {e}")
|
1176 |
+
# continue
|
1177 |
+
# else:
|
1178 |
+
# outlines = np.full_like(dilated_mask, 255)
|
1179 |
+
# cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
|
1180 |
+
# cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
1181 |
+
|
1182 |
+
# # # Draw paper bounds on annotated image
|
1183 |
+
# # cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3)
|
1184 |
+
|
1185 |
+
# # # Add paper size text
|
1186 |
+
# # paper_text = f"Paper: {paper_size}"
|
1187 |
+
# # cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
1188 |
+
|
1189 |
+
# cleanup_models()
|
1190 |
+
|
1191 |
+
# return (
|
1192 |
+
# shrunked_img_contours,
|
1193 |
+
# outlines,
|
1194 |
+
# dxf,
|
1195 |
+
# dilated_mask_orig,
|
1196 |
+
# f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}"
|
1197 |
+
# )
|
1198 |
+
def predict_with_paper(image, paper_size, offset, offset_unit, finger_clearance=False):
|
1199 |
"""Main prediction function using paper as reference"""
|
1200 |
|
1201 |
logger.info(f"Starting prediction with image shape: {image.shape}")
|
1202 |
+
logger.info(f"Paper size: {paper_size}, Offset: {offset} {offset_unit}")
|
1203 |
|
1204 |
+
# Convert offset to mm for internal calculations (DXF generation expects mm)
|
1205 |
if offset_unit == "inches":
|
1206 |
+
offset_mm = convert_units(offset, "inches", "mm")
|
1207 |
else:
|
1208 |
offset_mm = offset
|
1209 |
|
|
|
1215 |
raise gr.Error("Offset Value Can't be negative")
|
1216 |
|
1217 |
try:
|
1218 |
+
# Detect paper bounds and calculate scaling factor (always in mm for DXF)
|
1219 |
logger.info("Starting paper detection...")
|
1220 |
+
paper_contour, scaling_factor = detect_paper_bounds(image, paper_size, output_unit="mm")
|
1221 |
+
logger.info(f"Paper detected successfully with scaling factor: {scaling_factor:.6f} mm/px")
|
1222 |
|
1223 |
except ReferenceBoxNotDetectedError as e:
|
1224 |
logger.error(f"Paper detection failed: {e}")
|
|
|
1230 |
logger.error(f"Unexpected error in paper detection: {e}")
|
1231 |
raise gr.Error(f"Error processing image: {str(e)}")
|
1232 |
|
1233 |
+
# Rest of the function remains the same...
|
1234 |
+
# [Keep all the existing object detection and DXF generation code]
|
1235 |
+
|
1236 |
try:
|
|
|
|
|
|
|
|
|
1237 |
# Mask paper area in input image first
|
1238 |
masked_input_image = mask_paper_area_in_image(image, paper_contour)
|
1239 |
|
|
|
1267 |
# Apply edge rounding if specified
|
1268 |
rounded_mask = objects_mask.copy()
|
1269 |
|
1270 |
+
# Apply dilation for offset - more precise calculation using mm values
|
1271 |
if offset_mm > 0:
|
1272 |
+
offset_pixels = max(1, int(round(float(offset_mm) / scaling_factor)))
|
1273 |
if offset_pixels > 0:
|
1274 |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (offset_pixels*2+1, offset_pixels*2+1))
|
1275 |
dilated_mask = cv2.dilate(rounded_mask, kernel, iterations=1)
|
1276 |
else:
|
1277 |
dilated_mask = rounded_mask.copy()
|
1278 |
+
else:
|
1279 |
+
dilated_mask = rounded_mask.copy()
|
1280 |
|
1281 |
# Save original dilated mask for output
|
1282 |
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
|
|
1286 |
outlines, contours = extract_outlines(dilated_mask)
|
1287 |
|
1288 |
try:
|
1289 |
+
# Generate DXF - scaling_factor should be in mm/px for proper DXF units
|
1290 |
dxf, finger_polygons, original_polygons = save_dxf_spline(
|
1291 |
contours,
|
1292 |
+
scaling_factor, # This should be mm/px
|
1293 |
processed_size[0],
|
1294 |
finger_clearance=(finger_clearance == "On")
|
1295 |
)
|
|
|
1318 |
cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
|
1319 |
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
1320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1321 |
cleanup_models()
|
1322 |
|
1323 |
+
# Format scaling info with proper unit display
|
1324 |
+
if offset_unit == "inches":
|
1325 |
+
offset_display = f"{offset} inches ({offset_mm:.3f} mm)"
|
1326 |
+
else:
|
1327 |
+
offset_display = f"{offset} mm"
|
1328 |
+
|
1329 |
+
scale_info = f"Scale: {scaling_factor:.6f} mm/px | Paper: {paper_size} | Offset: {offset_display}"
|
1330 |
+
|
1331 |
return (
|
1332 |
shrunked_img_contours,
|
1333 |
outlines,
|
1334 |
dxf,
|
1335 |
dilated_mask_orig,
|
1336 |
+
scale_info
|
1337 |
)
|
1338 |
|
1339 |
def predict_full_paper(image, paper_size, offset_value_mm,offset_unit, enable_finger_cut, selected_outputs):
|