Spaces:
Running
Running
Upload 6 files
Browse files- api_server.py +525 -0
- app.py.txt +1007 -0
- requirements.txt +13 -0
- scalingtestupdated.py +184 -0
- u2netp.pth +3 -0
- u2netp.py +525 -0
api_server.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
2 |
+
# from pydantic import BaseModel
|
3 |
+
# import numpy as np
|
4 |
+
# from PIL import Image
|
5 |
+
# import io, uuid, os, shutil, timeit
|
6 |
+
# from datetime import datetime
|
7 |
+
# from fastapi.staticfiles import StaticFiles
|
8 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
9 |
+
|
10 |
+
# # import your three wrappers
|
11 |
+
# from app import predict_simple, predict_middle, predict_full
|
12 |
+
|
13 |
+
# app = FastAPI()
|
14 |
+
|
15 |
+
# # allow CORS if needed
|
16 |
+
# app.add_middleware(
|
17 |
+
# CORSMiddleware,
|
18 |
+
# allow_origins=["*"],
|
19 |
+
# allow_methods=["*"],
|
20 |
+
# allow_headers=["*"],
|
21 |
+
# )
|
22 |
+
|
23 |
+
# BASE_URL = "https://snapanddtraceapp-988917236820.us-central1.run.app"
|
24 |
+
# OUTPUT_DIR = os.path.abspath("./outputs")
|
25 |
+
# os.makedirs(OUTPUT_DIR, exist_ok=True)
|
26 |
+
# app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
|
27 |
+
|
28 |
+
# UPDATES_DIR = os.path.abspath("./updates")
|
29 |
+
# os.makedirs(UPDATES_DIR, exist_ok=True)
|
30 |
+
# app.mount("/updates", StaticFiles(directory=UPDATES_DIR), name="updates")
|
31 |
+
|
32 |
+
|
33 |
+
# def save_and_build_urls(
|
34 |
+
# session_id: str,
|
35 |
+
# output_image: np.ndarray,
|
36 |
+
# outlines: np.ndarray,
|
37 |
+
# dxf_path: str,
|
38 |
+
# mask: np.ndarray
|
39 |
+
# ):
|
40 |
+
# """Helper to save all four artifacts and return public URLs."""
|
41 |
+
# request_dir = os.path.join(OUTPUT_DIR, session_id)
|
42 |
+
# os.makedirs(request_dir, exist_ok=True)
|
43 |
+
|
44 |
+
# # filenames
|
45 |
+
# out_fn = "overlay.jpg"
|
46 |
+
# outlines_fn = "outlines.jpg"
|
47 |
+
# mask_fn = "mask.jpg"
|
48 |
+
# current_date = datetime.now().strftime("%d-%m-%Y")
|
49 |
+
# dxf_fn = f"out_{current_date}_{session_id}.dxf"
|
50 |
+
|
51 |
+
# # full paths
|
52 |
+
# out_path = os.path.join(request_dir, out_fn)
|
53 |
+
# outlines_path = os.path.join(request_dir, outlines_fn)
|
54 |
+
# mask_path = os.path.join(request_dir, mask_fn)
|
55 |
+
# new_dxf_path = os.path.join(request_dir, dxf_fn)
|
56 |
+
|
57 |
+
# # save images
|
58 |
+
# Image.fromarray(output_image).save(out_path)
|
59 |
+
# Image.fromarray(outlines).save(outlines_path)
|
60 |
+
# Image.fromarray(mask).save(mask_path)
|
61 |
+
|
62 |
+
# # copy dx file
|
63 |
+
# if os.path.exists(dxf_path):
|
64 |
+
# shutil.copy(dxf_path, new_dxf_path)
|
65 |
+
# else:
|
66 |
+
# # fallback if your DXF generator returns bytes or string
|
67 |
+
# with open(new_dxf_path, "wb") as f:
|
68 |
+
# if isinstance(dxf_path, (bytes, bytearray)):
|
69 |
+
# f.write(dxf_path)
|
70 |
+
# else:
|
71 |
+
# f.write(str(dxf_path).encode("utf-8"))
|
72 |
+
|
73 |
+
# # build URLs
|
74 |
+
# return {
|
75 |
+
# "output_image_url": f"{BASE_URL}/outputs/{session_id}/{out_fn}",
|
76 |
+
# "outlines_url": f"{BASE_URL}/outputs/{session_id}/{outlines_fn}",
|
77 |
+
# "mask_url": f"{BASE_URL}/outputs/{session_id}/{mask_fn}",
|
78 |
+
# "dxf_url": f"{BASE_URL}/outputs/{session_id}/{dxf_fn}",
|
79 |
+
# }
|
80 |
+
|
81 |
+
|
82 |
+
# @app.post("/predict1")
|
83 |
+
# async def predict1_api(
|
84 |
+
# file: UploadFile = File(...)
|
85 |
+
# ):
|
86 |
+
# """
|
87 |
+
# Simple predict: only image → overlay, outlines, mask, DXF
|
88 |
+
# """
|
89 |
+
# session_id = str(uuid.uuid4())
|
90 |
+
# try:
|
91 |
+
# img_bytes = await file.read()
|
92 |
+
# image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
93 |
+
# except Exception:
|
94 |
+
# raise HTTPException(400, "Invalid image upload")
|
95 |
+
|
96 |
+
# try:
|
97 |
+
# start = timeit.default_timer()
|
98 |
+
# out_img, outlines, dxf_path, mask = predict_simple(image)
|
99 |
+
# elapsed = timeit.default_timer() - start
|
100 |
+
# print(f"[{session_id}] predict1 in {elapsed:.2f}s")
|
101 |
+
|
102 |
+
# return save_and_build_urls(session_id, out_img, outlines, dxf_path, mask)
|
103 |
+
|
104 |
+
# except Exception as e:
|
105 |
+
# raise HTTPException(500, f"predict1 failed: {e}")
|
106 |
+
# except ReferenceBoxNotDetectedError:
|
107 |
+
# raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
108 |
+
# except FingerCutOverlapError:
|
109 |
+
# raise HTTPException(status_code=400, detail="There was an overlap with fingercuts!s Please try again to generate dxf.")
|
110 |
+
|
111 |
+
|
112 |
+
# @app.post("/predict2")
|
113 |
+
# async def predict2_api(
|
114 |
+
# file: UploadFile = File(...),
|
115 |
+
# enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
116 |
+
# fillet_value_mm: float = Form(...)
|
117 |
+
# ):
|
118 |
+
# """
|
119 |
+
# Middle predict: image + fillet toggle + fillet value → overlay, outlines, mask, DXF
|
120 |
+
# """
|
121 |
+
# session_id = str(uuid.uuid4())
|
122 |
+
# try:
|
123 |
+
# img_bytes = await file.read()
|
124 |
+
# image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
125 |
+
# except Exception:
|
126 |
+
# raise HTTPException(400, "Invalid image upload")
|
127 |
+
|
128 |
+
# try:
|
129 |
+
# start = timeit.default_timer()
|
130 |
+
# out_img, outlines, dxf_path, mask = predict_middle(
|
131 |
+
# image, enable_fillet, fillet_value_mm
|
132 |
+
# )
|
133 |
+
# elapsed = timeit.default_timer() - start
|
134 |
+
# print(f"[{session_id}] predict2 in {elapsed:.2f}s")
|
135 |
+
|
136 |
+
# return save_and_build_urls(session_id, out_img, outlines, dxf_path, mask)
|
137 |
+
|
138 |
+
# except Exception as e:
|
139 |
+
# raise HTTPException(500, f"predict2 failed: {e}")
|
140 |
+
# except ReferenceBoxNotDetectedError:
|
141 |
+
# raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
142 |
+
# except FingerCutOverlapError:
|
143 |
+
# raise HTTPException(status_code=400, detail="There was an overlap with fingercuts!s Please try again to generate dxf.")
|
144 |
+
|
145 |
+
# @app.post("/predict3")
|
146 |
+
# async def predict3_api(
|
147 |
+
# file: UploadFile = File(...),
|
148 |
+
# enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
149 |
+
# fillet_value_mm: float = Form(...),
|
150 |
+
# enable_finger_cut: str = Form(..., regex="^(On|Off)$")
|
151 |
+
# ):
|
152 |
+
# """
|
153 |
+
# Full predict: image + fillet toggle/value + finger-cut toggle → overlay, outlines, mask, DXF
|
154 |
+
# """
|
155 |
+
# session_id = str(uuid.uuid4())
|
156 |
+
# try:
|
157 |
+
# img_bytes = await file.read()
|
158 |
+
# image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
159 |
+
# except Exception:
|
160 |
+
# raise HTTPException(400, "Invalid image upload")
|
161 |
+
|
162 |
+
# try:
|
163 |
+
# start = timeit.default_timer()
|
164 |
+
# out_img, outlines, dxf_path, mask = predict_full(
|
165 |
+
# image, enable_fillet, fillet_value_mm, enable_finger_cut
|
166 |
+
# )
|
167 |
+
# elapsed = timeit.default_timer() - start
|
168 |
+
# print(f"[{session_id}] predict3 in {elapsed:.2f}s")
|
169 |
+
|
170 |
+
# return save_and_build_urls(session_id, out_img, outlines, dxf_path, mask)
|
171 |
+
|
172 |
+
# except Exception as e:
|
173 |
+
# raise HTTPException(500, f"predict3 failed: {e}")
|
174 |
+
# except ReferenceBoxNotDetectedError:
|
175 |
+
# raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
176 |
+
# except FingerCutOverlapError:
|
177 |
+
# raise HTTPException(status_code=400, detail="There was an overlap with fingercuts!s Please try again to generate dxf.")
|
178 |
+
|
179 |
+
# @app.post("/update")
|
180 |
+
# async def update_files(
|
181 |
+
# output_image: UploadFile = File(...),
|
182 |
+
# outlines_image: UploadFile = File(...),
|
183 |
+
# mask_image: UploadFile = File(...),
|
184 |
+
# dxf_file: UploadFile = File(...)
|
185 |
+
# ):
|
186 |
+
# session_id = str(uuid.uuid4())
|
187 |
+
# update_dir = os.path.join(UPDATES_DIR, session_id)
|
188 |
+
# os.makedirs(update_dir, exist_ok=True)
|
189 |
+
|
190 |
+
# try:
|
191 |
+
# upload_map = {
|
192 |
+
# "output_image": output_image,
|
193 |
+
# "outlines_image": outlines_image,
|
194 |
+
# "mask_image": mask_image,
|
195 |
+
# "dxf_file": dxf_file,
|
196 |
+
# }
|
197 |
+
# urls = {}
|
198 |
+
# for key, up in upload_map.items():
|
199 |
+
# fn = up.filename
|
200 |
+
# path = os.path.join(update_dir, fn)
|
201 |
+
# with open(path, "wb") as f:
|
202 |
+
# shutil.copyfileobj(up.file, f)
|
203 |
+
# urls[key] = f"{BASE_URL}/updates/{session_id}/{fn}"
|
204 |
+
|
205 |
+
# return {"session_id": session_id, "uploaded": urls}
|
206 |
+
|
207 |
+
# except Exception as e:
|
208 |
+
# raise HTTPException(500, f"Update failed: {e}")
|
209 |
+
|
210 |
+
|
211 |
+
# if __name__ == "__main__":
|
212 |
+
# import uvicorn
|
213 |
+
# port = int(os.environ.get("PORT", 8082))
|
214 |
+
# print(f"Starting FastAPI server on 0.0.0.0:{port}...")
|
215 |
+
# uvicorn.run(app, host="0.0.0.0", port=port)
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
227 |
+
from pydantic import BaseModel
|
228 |
+
import numpy as np
|
229 |
+
from PIL import Image
|
230 |
+
import io, uuid, os, shutil, timeit
|
231 |
+
from datetime import datetime
|
232 |
+
from fastapi.staticfiles import StaticFiles
|
233 |
+
from fastapi.middleware.cors import CORSMiddleware
|
234 |
+
from fastapi.responses import FileResponse
|
235 |
+
|
236 |
+
# import your three wrappers
|
237 |
+
from app import predict_simple, predict_middle, predict_full
|
238 |
+
|
239 |
+
from app import (
|
240 |
+
predict_simple, predict_middle, predict_full,
|
241 |
+
ReferenceBoxNotDetectedError,
|
242 |
+
FingerCutOverlapError
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
app = FastAPI()
|
247 |
+
|
248 |
+
# allow CORS if needed
|
249 |
+
app.add_middleware(
|
250 |
+
CORSMiddleware,
|
251 |
+
allow_origins=["*"],
|
252 |
+
allow_methods=["*"],
|
253 |
+
allow_headers=["*"],
|
254 |
+
)
|
255 |
+
|
256 |
+
BASE_URL = "https://snapanddtraceapp-988917236820.us-central1.run.app"
|
257 |
+
|
258 |
+
OUTPUT_DIR = os.path.abspath("./outputs")
|
259 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
260 |
+
|
261 |
+
UPDATES_DIR = os.path.abspath("./updates")
|
262 |
+
os.makedirs(UPDATES_DIR, exist_ok=True)
|
263 |
+
|
264 |
+
# Mount static directories with normal StaticFiles
|
265 |
+
app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
|
266 |
+
app.mount("/updates", StaticFiles(directory=UPDATES_DIR), name="updates")
|
267 |
+
|
268 |
+
|
269 |
+
def save_and_build_urls(
|
270 |
+
session_id: str,
|
271 |
+
output_image: np.ndarray,
|
272 |
+
outlines: np.ndarray,
|
273 |
+
dxf_path: str,
|
274 |
+
mask: np.ndarray,
|
275 |
+
endpoint_type: str,
|
276 |
+
fillet_value: float = None,
|
277 |
+
finger_cut: str = None
|
278 |
+
):
|
279 |
+
"""Helper to save all four artifacts and return public URLs."""
|
280 |
+
request_dir = os.path.join(OUTPUT_DIR, session_id)
|
281 |
+
os.makedirs(request_dir, exist_ok=True)
|
282 |
+
|
283 |
+
# filenames
|
284 |
+
out_fn = "overlay.jpg"
|
285 |
+
outlines_fn = "outlines.jpg"
|
286 |
+
mask_fn = "mask.jpg"
|
287 |
+
|
288 |
+
# Get current date
|
289 |
+
current_date = datetime.utcnow().strftime("%d-%m-%Y")
|
290 |
+
|
291 |
+
|
292 |
+
# Format fillet value with underscore instead of dot
|
293 |
+
fillet_str = f"{fillet_value:.2f}".replace(".", "_") if fillet_value is not None else None
|
294 |
+
|
295 |
+
# Determine DXF filename based on endpoint type
|
296 |
+
if endpoint_type == "predict1":
|
297 |
+
dxf_fn = f"DXF_{current_date}.dxf"
|
298 |
+
elif endpoint_type == "predict2":
|
299 |
+
dxf_fn = f"DXF_{current_date}.dxf"
|
300 |
+
elif endpoint_type == "predict3":
|
301 |
+
dxf_fn = f"DXF_{current_date}.dxf"
|
302 |
+
|
303 |
+
# full paths
|
304 |
+
out_path = os.path.join(request_dir, out_fn)
|
305 |
+
outlines_path = os.path.join(request_dir, outlines_fn)
|
306 |
+
mask_path = os.path.join(request_dir, mask_fn)
|
307 |
+
new_dxf_path = os.path.join(request_dir, dxf_fn)
|
308 |
+
|
309 |
+
# save images
|
310 |
+
Image.fromarray(output_image).save(out_path)
|
311 |
+
Image.fromarray(outlines).save(outlines_path)
|
312 |
+
Image.fromarray(mask).save(mask_path)
|
313 |
+
|
314 |
+
# copy dxf file
|
315 |
+
if os.path.exists(dxf_path):
|
316 |
+
shutil.copy(dxf_path, new_dxf_path)
|
317 |
+
else:
|
318 |
+
# fallback if your DXF generator returns bytes or string
|
319 |
+
with open(new_dxf_path, "wb") as f:
|
320 |
+
if isinstance(dxf_path, (bytes, bytearray)):
|
321 |
+
f.write(dxf_path)
|
322 |
+
else:
|
323 |
+
f.write(str(dxf_path).encode("utf-8"))
|
324 |
+
|
325 |
+
# build URLs with /download prefix for DXF
|
326 |
+
return {
|
327 |
+
"output_image_url": f"{BASE_URL}/outputs/{session_id}/{out_fn}",
|
328 |
+
"outlines_url": f"{BASE_URL}/outputs/{session_id}/{outlines_fn}",
|
329 |
+
"mask_url": f"{BASE_URL}/outputs/{session_id}/{mask_fn}",
|
330 |
+
"dxf_url": f"{BASE_URL}/download/{session_id}/{dxf_fn}", # Changed to use download endpoint
|
331 |
+
}
|
332 |
+
|
333 |
+
# Add new endpoint for downloading DXF files
|
334 |
+
@app.get("/download/{session_id}/{filename}")
|
335 |
+
async def download_file(session_id: str, filename: str):
|
336 |
+
file_path = os.path.join(OUTPUT_DIR, session_id, filename)
|
337 |
+
if not os.path.exists(file_path):
|
338 |
+
raise HTTPException(status_code=404, detail="File not found")
|
339 |
+
|
340 |
+
return FileResponse(
|
341 |
+
path=file_path,
|
342 |
+
filename=filename,
|
343 |
+
media_type="application/x-dxf",
|
344 |
+
headers={"Content-Disposition": f"attachment; filename={filename}"}
|
345 |
+
)
|
346 |
+
|
347 |
+
|
348 |
+
@app.post("/predict1")
|
349 |
+
async def predict1_api(
|
350 |
+
file: UploadFile = File(...)
|
351 |
+
):
|
352 |
+
"""
|
353 |
+
Simple predict: only image → overlay, outlines, mask, DXF
|
354 |
+
DXF naming format: DXF_DD-MM-YYYY.dxf
|
355 |
+
"""
|
356 |
+
session_id = str(uuid.uuid4())
|
357 |
+
try:
|
358 |
+
img_bytes = await file.read()
|
359 |
+
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
360 |
+
except Exception:
|
361 |
+
raise HTTPException(400, "Invalid image upload")
|
362 |
+
|
363 |
+
try:
|
364 |
+
start = timeit.default_timer()
|
365 |
+
out_img, outlines, dxf_path, mask = predict_simple(image)
|
366 |
+
elapsed = timeit.default_timer() - start
|
367 |
+
print(f"[{session_id}] predict1 in {elapsed:.2f}s")
|
368 |
+
|
369 |
+
return save_and_build_urls(
|
370 |
+
session_id=session_id,
|
371 |
+
output_image=out_img,
|
372 |
+
outlines=outlines,
|
373 |
+
dxf_path=dxf_path,
|
374 |
+
mask=mask,
|
375 |
+
endpoint_type="predict1"
|
376 |
+
)
|
377 |
+
|
378 |
+
except ReferenceBoxNotDetectedError:
|
379 |
+
raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
380 |
+
except FingerCutOverlapError:
|
381 |
+
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
|
382 |
+
except HTTPException as e:
|
383 |
+
raise e
|
384 |
+
except Exception as e:
|
385 |
+
raise HTTPException(status_code=500, detail="Error detecting reference battery! Please try again with a clearer image.")
|
386 |
+
|
387 |
+
@app.post("/predict2")
|
388 |
+
async def predict2_api(
|
389 |
+
file: UploadFile = File(...),
|
390 |
+
enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
391 |
+
fillet_value_mm: float = Form(...)
|
392 |
+
):
|
393 |
+
"""
|
394 |
+
Middle predict: image + fillet toggle + fillet value → overlay, outlines, mask, DXF
|
395 |
+
DXF naming format: DXF_DD-MM-YYYY_fillet-value_mm.dxf
|
396 |
+
"""
|
397 |
+
session_id = str(uuid.uuid4())
|
398 |
+
try:
|
399 |
+
img_bytes = await file.read()
|
400 |
+
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
401 |
+
except Exception:
|
402 |
+
raise HTTPException(400, "Invalid image upload")
|
403 |
+
|
404 |
+
try:
|
405 |
+
start = timeit.default_timer()
|
406 |
+
out_img, outlines, dxf_path, mask = predict_middle(
|
407 |
+
image, enable_fillet, fillet_value_mm
|
408 |
+
)
|
409 |
+
elapsed = timeit.default_timer() - start
|
410 |
+
print(f"[{session_id}] predict2 in {elapsed:.2f}s")
|
411 |
+
|
412 |
+
return save_and_build_urls(
|
413 |
+
session_id=session_id,
|
414 |
+
output_image=out_img,
|
415 |
+
outlines=outlines,
|
416 |
+
dxf_path=dxf_path,
|
417 |
+
mask=mask,
|
418 |
+
endpoint_type="predict2",
|
419 |
+
fillet_value=fillet_value_mm
|
420 |
+
)
|
421 |
+
|
422 |
+
except ReferenceBoxNotDetectedError:
|
423 |
+
raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
424 |
+
except FingerCutOverlapError:
|
425 |
+
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
|
426 |
+
except HTTPException as e:
|
427 |
+
raise e
|
428 |
+
except Exception as e:
|
429 |
+
raise HTTPException(status_code=500, detail="Error detecting reference battery! Please try again with a clearer image.")
|
430 |
+
|
431 |
+
|
432 |
+
@app.post("/predict3")
|
433 |
+
async def predict3_api(
|
434 |
+
file: UploadFile = File(...),
|
435 |
+
enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
436 |
+
fillet_value_mm: float = Form(...),
|
437 |
+
enable_finger_cut: str = Form(..., regex="^(On|Off)$")
|
438 |
+
):
|
439 |
+
"""
|
440 |
+
Full predict: image + fillet toggle/value + finger-cut toggle → overlay, outlines, mask, DXF
|
441 |
+
DXF naming format: DXF_DD-MM-YYYY_fillet-value_mm_fingercut-On|Off.dxf
|
442 |
+
"""
|
443 |
+
session_id = str(uuid.uuid4())
|
444 |
+
try:
|
445 |
+
img_bytes = await file.read()
|
446 |
+
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
447 |
+
except Exception:
|
448 |
+
raise HTTPException(400, "Invalid image upload")
|
449 |
+
|
450 |
+
try:
|
451 |
+
start = timeit.default_timer()
|
452 |
+
out_img, outlines, dxf_path, mask = predict_full(
|
453 |
+
image, enable_fillet, fillet_value_mm, enable_finger_cut
|
454 |
+
)
|
455 |
+
elapsed = timeit.default_timer() - start
|
456 |
+
print(f"[{session_id}] predict3 in {elapsed:.2f}s")
|
457 |
+
|
458 |
+
return save_and_build_urls(
|
459 |
+
session_id=session_id,
|
460 |
+
output_image=out_img,
|
461 |
+
outlines=outlines,
|
462 |
+
dxf_path=dxf_path,
|
463 |
+
mask=mask,
|
464 |
+
endpoint_type="predict3",
|
465 |
+
fillet_value=fillet_value_mm,
|
466 |
+
finger_cut=enable_finger_cut
|
467 |
+
)
|
468 |
+
|
469 |
+
except ReferenceBoxNotDetectedError:
|
470 |
+
raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
471 |
+
except FingerCutOverlapError:
|
472 |
+
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
|
473 |
+
except HTTPException as e:
|
474 |
+
raise e
|
475 |
+
except Exception as e:
|
476 |
+
raise HTTPException(status_code=500, detail="Error detecting reference battery! Please try again with a clearer image.")
|
477 |
+
|
478 |
+
|
479 |
+
@app.post("/update")
|
480 |
+
async def update_files(
|
481 |
+
output_image: UploadFile = File(...),
|
482 |
+
outlines_image: UploadFile = File(...),
|
483 |
+
mask_image: UploadFile = File(...),
|
484 |
+
dxf_file: UploadFile = File(...)
|
485 |
+
):
|
486 |
+
session_id = str(uuid.uuid4())
|
487 |
+
update_dir = os.path.join(UPDATES_DIR, session_id)
|
488 |
+
os.makedirs(update_dir, exist_ok=True)
|
489 |
+
|
490 |
+
try:
|
491 |
+
upload_map = {
|
492 |
+
"output_image": output_image,
|
493 |
+
"outlines_image": outlines_image,
|
494 |
+
"mask_image": mask_image,
|
495 |
+
"dxf_file": dxf_file,
|
496 |
+
}
|
497 |
+
urls = {}
|
498 |
+
for key, up in upload_map.items():
|
499 |
+
fn = up.filename
|
500 |
+
path = os.path.join(update_dir, fn)
|
501 |
+
with open(path, "wb") as f:
|
502 |
+
shutil.copyfileobj(up.file, f)
|
503 |
+
urls[key] = f"{BASE_URL}/updates/{session_id}/{fn}"
|
504 |
+
|
505 |
+
return {"session_id": session_id, "uploaded": urls}
|
506 |
+
|
507 |
+
except Exception as e:
|
508 |
+
raise HTTPException(500, f"Update failed: {e}")
|
509 |
+
|
510 |
+
|
511 |
+
from fastapi import Response
|
512 |
+
|
513 |
+
@app.get("/health")
|
514 |
+
def health():
|
515 |
+
return Response(content="OK", status_code=200)
|
516 |
+
|
517 |
+
|
518 |
+
if __name__ == "__main__":
|
519 |
+
import uvicorn
|
520 |
+
port = int(os.environ.get("PORT", 8080))
|
521 |
+
print(f"Starting FastAPI server on 0.0.0.0:{port}...")
|
522 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
523 |
+
|
524 |
+
|
525 |
+
|
app.py.txt
ADDED
@@ -0,0 +1,1007 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List, Union, Tuple
|
4 |
+
from PIL import Image
|
5 |
+
import ezdxf.units
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torchvision import transforms
|
9 |
+
from ultralytics import YOLOWorld, YOLO
|
10 |
+
from ultralytics.engine.results import Results
|
11 |
+
from ultralytics.utils.plotting import save_one_box
|
12 |
+
from transformers import AutoModelForImageSegmentation
|
13 |
+
import cv2
|
14 |
+
import ezdxf
|
15 |
+
import gradio as gr
|
16 |
+
import gc
|
17 |
+
from scalingtestupdated import calculate_scaling_factor
|
18 |
+
from scipy.interpolate import splprep, splev
|
19 |
+
from scipy.ndimage import gaussian_filter1d
|
20 |
+
import json
|
21 |
+
import time
|
22 |
+
import signal
|
23 |
+
from shapely.ops import unary_union
|
24 |
+
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
|
25 |
+
from u2netp import U2NETP
|
26 |
+
import logging
|
27 |
+
import shutil
|
28 |
+
|
29 |
+
# Initialize logging
|
30 |
+
logging.basicConfig(level=logging.INFO)
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
# Create cache directory for models
|
34 |
+
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
|
35 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
36 |
+
|
37 |
+
# Paper size configurations (in mm)
|
38 |
+
PAPER_SIZES = {
|
39 |
+
"A4": {"width": 210, "height": 297},
|
40 |
+
"A3": {"width": 297, "height": 420},
|
41 |
+
"US Letter": {"width": 215.9, "height": 279.4}
|
42 |
+
}
|
43 |
+
|
44 |
+
# Custom Exception Classes
|
45 |
+
class TimeoutReachedError(Exception):
|
46 |
+
pass
|
47 |
+
|
48 |
+
class BoundaryOverlapError(Exception):
|
49 |
+
pass
|
50 |
+
|
51 |
+
class TextOverlapError(Exception):
|
52 |
+
pass
|
53 |
+
|
54 |
+
class PaperNotDetectedError(Exception):
|
55 |
+
"""Raised when the paper cannot be detected in the image"""
|
56 |
+
pass
|
57 |
+
|
58 |
+
class MultipleObjectsError(Exception):
|
59 |
+
"""Raised when multiple objects are detected on the paper"""
|
60 |
+
def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."):
|
61 |
+
super().__init__(message)
|
62 |
+
|
63 |
+
class NoObjectDetectedError(Exception):
|
64 |
+
"""Raised when no object is detected on the paper"""
|
65 |
+
def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."):
|
66 |
+
super().__init__(message)
|
67 |
+
|
68 |
+
class FingerCutOverlapError(Exception):
|
69 |
+
"""Raised when finger cuts overlap with existing geometry"""
|
70 |
+
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
|
71 |
+
super().__init__(message)
|
72 |
+
|
73 |
+
# Global model variables for lazy loading
|
74 |
+
paper_detector_global = None
|
75 |
+
u2net_global = None
|
76 |
+
birefnet = None
|
77 |
+
|
78 |
+
# Model paths
|
79 |
+
paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt") # You'll need to train/provide this
|
80 |
+
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
|
81 |
+
|
82 |
+
# Device configuration
|
83 |
+
device = "cpu"
|
84 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
85 |
+
|
86 |
+
def ensure_model_files():
|
87 |
+
"""Ensure model files are available in cache directory"""
|
88 |
+
if not os.path.exists(paper_model_path):
|
89 |
+
if os.path.exists("paper_detector.pt"):
|
90 |
+
shutil.copy("paper_detector.pt", paper_model_path)
|
91 |
+
else:
|
92 |
+
logger.warning("paper_detector.pt model file not found - using fallback detection")
|
93 |
+
|
94 |
+
if not os.path.exists(u2net_model_path):
|
95 |
+
if os.path.exists("u2netp.pth"):
|
96 |
+
shutil.copy("u2netp.pth", u2net_model_path)
|
97 |
+
else:
|
98 |
+
raise FileNotFoundError("u2netp.pth model file not found")
|
99 |
+
|
100 |
+
ensure_model_files()
|
101 |
+
|
102 |
+
# Lazy loading functions
|
103 |
+
def get_paper_detector():
|
104 |
+
"""Lazy load paper detector model"""
|
105 |
+
global paper_detector_global
|
106 |
+
if paper_detector_global is None:
|
107 |
+
logger.info("Loading paper detector model...")
|
108 |
+
if os.path.exists(paper_model_path):
|
109 |
+
paper_detector_global = YOLO(paper_model_path)
|
110 |
+
else:
|
111 |
+
# Fallback to generic object detection for paper-like rectangles
|
112 |
+
logger.warning("Using fallback paper detection")
|
113 |
+
paper_detector_global = None
|
114 |
+
logger.info("Paper detector loaded successfully")
|
115 |
+
return paper_detector_global
|
116 |
+
|
117 |
+
def get_u2net():
|
118 |
+
"""Lazy load U2NETP model"""
|
119 |
+
global u2net_global
|
120 |
+
if u2net_global is None:
|
121 |
+
logger.info("Loading U2NETP model...")
|
122 |
+
u2net_global = U2NETP(3, 1)
|
123 |
+
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
|
124 |
+
u2net_global.to(device)
|
125 |
+
u2net_global.eval()
|
126 |
+
logger.info("U2NETP model loaded successfully")
|
127 |
+
return u2net_global
|
128 |
+
|
129 |
+
def load_birefnet_model():
|
130 |
+
"""Load BiRefNet model from HuggingFace"""
|
131 |
+
return AutoModelForImageSegmentation.from_pretrained(
|
132 |
+
'ZhengPeng7/BiRefNet',
|
133 |
+
trust_remote_code=True
|
134 |
+
)
|
135 |
+
|
136 |
+
def get_birefnet():
|
137 |
+
"""Lazy load BiRefNet model"""
|
138 |
+
global birefnet
|
139 |
+
if birefnet is None:
|
140 |
+
logger.info("Loading BiRefNet model...")
|
141 |
+
birefnet = load_birefnet_model()
|
142 |
+
birefnet.to(device)
|
143 |
+
birefnet.eval()
|
144 |
+
logger.info("BiRefNet model loaded successfully")
|
145 |
+
return birefnet
|
146 |
+
|
147 |
+
def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
|
148 |
+
"""
|
149 |
+
Detect paper in the image using contour detection as fallback
|
150 |
+
Returns the paper contour and estimated scaling factor
|
151 |
+
"""
|
152 |
+
# Convert to grayscale
|
153 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
154 |
+
|
155 |
+
# Apply Gaussian blur
|
156 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
157 |
+
|
158 |
+
# Edge detection
|
159 |
+
edges = cv2.Canny(blurred, 50, 150)
|
160 |
+
|
161 |
+
# Find contours
|
162 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
163 |
+
|
164 |
+
# Filter contours by area and aspect ratio to find paper-like rectangles
|
165 |
+
paper_contours = []
|
166 |
+
min_area = (image.shape[0] * image.shape[1]) * 0.1 # At least 10% of image
|
167 |
+
|
168 |
+
for contour in contours:
|
169 |
+
area = cv2.contourArea(contour)
|
170 |
+
if area > min_area:
|
171 |
+
# Approximate contour to polygon
|
172 |
+
epsilon = 0.02 * cv2.arcLength(contour, True)
|
173 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
174 |
+
|
175 |
+
# Check if it's roughly rectangular (4 corners)
|
176 |
+
if len(approx) >= 4:
|
177 |
+
# Calculate bounding rectangle
|
178 |
+
rect = cv2.boundingRect(approx)
|
179 |
+
aspect_ratio = rect[2] / rect[3] # width / height
|
180 |
+
|
181 |
+
# Check if aspect ratio matches common paper ratios
|
182 |
+
# A4: 1.414, A3: 1.414, US Letter: 1.294
|
183 |
+
if 0.7 < aspect_ratio < 1.8: # Allow some tolerance
|
184 |
+
paper_contours.append((contour, area, aspect_ratio))
|
185 |
+
|
186 |
+
if not paper_contours:
|
187 |
+
raise PaperNotDetectedError("Could not detect paper in the image")
|
188 |
+
|
189 |
+
# Select the largest paper-like contour
|
190 |
+
paper_contours.sort(key=lambda x: x[1], reverse=True)
|
191 |
+
best_contour = paper_contours[0][0]
|
192 |
+
|
193 |
+
return best_contour, 0.0 # Return 0.0 as placeholder scaling factor
|
194 |
+
|
195 |
+
def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]:
|
196 |
+
"""
|
197 |
+
Detect paper bounds in the image and calculate scaling factor
|
198 |
+
"""
|
199 |
+
try:
|
200 |
+
paper_detector = get_paper_detector()
|
201 |
+
|
202 |
+
if paper_detector is not None:
|
203 |
+
# Use trained model if available
|
204 |
+
results = paper_detector.predict(image, conf=0.5)
|
205 |
+
if not results or len(results) == 0 or len(results[0].boxes) == 0:
|
206 |
+
logger.warning("Model detection failed, using fallback contour detection")
|
207 |
+
return detect_paper_contour(image)
|
208 |
+
|
209 |
+
# Get the largest detected paper
|
210 |
+
boxes = results[0].cpu().boxes.xyxy
|
211 |
+
largest_box = None
|
212 |
+
max_area = 0
|
213 |
+
|
214 |
+
for box in boxes:
|
215 |
+
x_min, y_min, x_max, y_max = box
|
216 |
+
area = (x_max - x_min) * (y_max - y_min)
|
217 |
+
if area > max_area:
|
218 |
+
max_area = area
|
219 |
+
largest_box = box
|
220 |
+
|
221 |
+
if largest_box is None:
|
222 |
+
raise PaperNotDetectedError("No paper detected by model")
|
223 |
+
|
224 |
+
# Convert box to contour-like format
|
225 |
+
x_min, y_min, x_max, y_max = map(int, largest_box)
|
226 |
+
paper_contour = np.array([
|
227 |
+
[[x_min, y_min]],
|
228 |
+
[[x_max, y_min]],
|
229 |
+
[[x_max, y_max]],
|
230 |
+
[[x_min, y_max]]
|
231 |
+
])
|
232 |
+
|
233 |
+
else:
|
234 |
+
# Use fallback contour detection
|
235 |
+
paper_contour, _ = detect_paper_contour(image)
|
236 |
+
|
237 |
+
# Calculate scaling factor based on paper size
|
238 |
+
scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size)
|
239 |
+
|
240 |
+
return paper_contour, scaling_factor
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
logger.error(f"Error in paper detection: {e}")
|
244 |
+
raise PaperNotDetectedError(f"Failed to detect paper: {str(e)}")
|
245 |
+
|
246 |
+
def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float:
|
247 |
+
"""
|
248 |
+
Calculate scaling factor based on detected paper dimensions
|
249 |
+
"""
|
250 |
+
# Get paper dimensions
|
251 |
+
paper_dims = PAPER_SIZES[paper_size]
|
252 |
+
expected_width_mm = paper_dims["width"]
|
253 |
+
expected_height_mm = paper_dims["height"]
|
254 |
+
|
255 |
+
# Calculate bounding rectangle of paper contour
|
256 |
+
rect = cv2.boundingRect(paper_contour)
|
257 |
+
detected_width_px = rect[2]
|
258 |
+
detected_height_px = rect[3]
|
259 |
+
|
260 |
+
# Calculate scaling factors for both dimensions
|
261 |
+
scale_x = expected_width_mm / detected_width_px
|
262 |
+
scale_y = expected_height_mm / detected_height_px
|
263 |
+
|
264 |
+
# Use average of both scales
|
265 |
+
scaling_factor = (scale_x + scale_y) / 2
|
266 |
+
|
267 |
+
logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm")
|
268 |
+
logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px")
|
269 |
+
|
270 |
+
return scaling_factor
|
271 |
+
|
272 |
+
def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None:
|
273 |
+
"""
|
274 |
+
Validate that only a single object is present on the paper
|
275 |
+
"""
|
276 |
+
# Create a mask for the paper area
|
277 |
+
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
|
278 |
+
cv2.fillPoly(paper_mask, [paper_contour], 255)
|
279 |
+
|
280 |
+
# Apply paper mask to object mask
|
281 |
+
masked_objects = cv2.bitwise_and(mask, paper_mask)
|
282 |
+
|
283 |
+
# Find contours of objects within paper bounds
|
284 |
+
contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
285 |
+
|
286 |
+
# Filter out very small contours (noise)
|
287 |
+
min_area = 1000 # Minimum area threshold
|
288 |
+
significant_contours = [c for c in contours if cv2.contourArea(c) > min_area]
|
289 |
+
|
290 |
+
if len(significant_contours) == 0:
|
291 |
+
raise NoObjectDetectedError()
|
292 |
+
elif len(significant_contours) > 1:
|
293 |
+
raise MultipleObjectsError()
|
294 |
+
|
295 |
+
logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found")
|
296 |
+
|
297 |
+
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
|
298 |
+
"""Remove background using U2NETP model"""
|
299 |
+
try:
|
300 |
+
u2net_model = get_u2net()
|
301 |
+
|
302 |
+
image_pil = Image.fromarray(image)
|
303 |
+
transform_u2netp = transforms.Compose([
|
304 |
+
transforms.Resize((320, 320)),
|
305 |
+
transforms.ToTensor(),
|
306 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
307 |
+
])
|
308 |
+
|
309 |
+
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
|
310 |
+
|
311 |
+
with torch.no_grad():
|
312 |
+
outputs = u2net_model(input_tensor)
|
313 |
+
|
314 |
+
pred = outputs[0]
|
315 |
+
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
|
316 |
+
pred_np = pred.squeeze().cpu().numpy()
|
317 |
+
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
|
318 |
+
pred_np = (pred_np * 255).astype(np.uint8)
|
319 |
+
|
320 |
+
return pred_np
|
321 |
+
except Exception as e:
|
322 |
+
logger.error(f"Error in U2NETP background removal: {e}")
|
323 |
+
raise
|
324 |
+
|
325 |
+
def remove_bg(image: np.ndarray) -> np.ndarray:
|
326 |
+
"""Remove background using BiRefNet model for main objects"""
|
327 |
+
try:
|
328 |
+
birefnet_model = get_birefnet()
|
329 |
+
|
330 |
+
transform_image = transforms.Compose([
|
331 |
+
transforms.Resize((1024, 1024)),
|
332 |
+
transforms.ToTensor(),
|
333 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
334 |
+
])
|
335 |
+
|
336 |
+
image_pil = Image.fromarray(image)
|
337 |
+
input_images = transform_image(image_pil).unsqueeze(0).to(device)
|
338 |
+
|
339 |
+
with torch.no_grad():
|
340 |
+
preds = birefnet_model(input_images)[-1].sigmoid().cpu()
|
341 |
+
pred = preds[0].squeeze()
|
342 |
+
|
343 |
+
pred_pil = transforms.ToPILImage()(pred)
|
344 |
+
|
345 |
+
scale_ratio = 1024 / max(image_pil.size)
|
346 |
+
scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio))
|
347 |
+
|
348 |
+
return np.array(pred_pil.resize(scaled_size))
|
349 |
+
except Exception as e:
|
350 |
+
logger.error(f"Error in BiRefNet background removal: {e}")
|
351 |
+
raise
|
352 |
+
|
353 |
+
def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.1) -> np.ndarray:
|
354 |
+
"""
|
355 |
+
Remove paper area from the mask to focus only on objects
|
356 |
+
"""
|
357 |
+
# Create paper mask with slight expansion to ensure complete removal
|
358 |
+
paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
|
359 |
+
|
360 |
+
# Expand paper contour slightly
|
361 |
+
epsilon = expansion_factor * cv2.arcLength(paper_contour, True)
|
362 |
+
expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True)
|
363 |
+
|
364 |
+
cv2.fillPoly(paper_mask, [expanded_contour], 255)
|
365 |
+
|
366 |
+
# Invert paper mask and apply to object mask
|
367 |
+
paper_mask_inv = cv2.bitwise_not(paper_mask)
|
368 |
+
result_mask = cv2.bitwise_and(mask, paper_mask_inv)
|
369 |
+
|
370 |
+
return result_mask
|
371 |
+
|
372 |
+
def resample_contour(contour, edge_radius_px: int = 0):
|
373 |
+
"""Resample contour with radius-aware smoothing and periodic handling."""
|
374 |
+
logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
|
375 |
+
|
376 |
+
num_points = 1500
|
377 |
+
sigma = max(2, int(edge_radius_px) // 4)
|
378 |
+
|
379 |
+
if len(contour) < 4:
|
380 |
+
error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
|
381 |
+
logger.error(error_msg)
|
382 |
+
raise ValueError(error_msg)
|
383 |
+
|
384 |
+
try:
|
385 |
+
contour = contour[:, 0, :]
|
386 |
+
logger.debug(f"Reshaped contour to shape {contour.shape}")
|
387 |
+
|
388 |
+
if not np.array_equal(contour[0], contour[-1]):
|
389 |
+
contour = np.vstack([contour, contour[0]])
|
390 |
+
|
391 |
+
tck, u = splprep(contour.T, u=None, s=0, per=True)
|
392 |
+
|
393 |
+
u_new = np.linspace(u.min(), u.max(), num_points)
|
394 |
+
x_new, y_new = splev(u_new, tck, der=0)
|
395 |
+
|
396 |
+
if sigma > 0:
|
397 |
+
x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
|
398 |
+
y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
|
399 |
+
|
400 |
+
x_new[-1] = x_new[0]
|
401 |
+
y_new[-1] = y_new[0]
|
402 |
+
|
403 |
+
result = np.array([x_new, y_new]).T
|
404 |
+
logger.info(f"Completed resample_contour with result shape {result.shape}")
|
405 |
+
return result
|
406 |
+
|
407 |
+
except Exception as e:
|
408 |
+
logger.error(f"Error in resample_contour: {e}")
|
409 |
+
raise
|
410 |
+
|
411 |
+
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
|
412 |
+
"""Save contours as DXF splines with optional finger cuts"""
|
413 |
+
doc = ezdxf.new(units=ezdxf.units.MM)
|
414 |
+
doc.header["$INSUNITS"] = ezdxf.units.MM
|
415 |
+
msp = doc.modelspace()
|
416 |
+
final_polygons_inch = []
|
417 |
+
finger_centers = []
|
418 |
+
original_polygons = []
|
419 |
+
|
420 |
+
# Scale correction factor
|
421 |
+
scale_correction = 1.079
|
422 |
+
|
423 |
+
for contour in inflated_contours:
|
424 |
+
try:
|
425 |
+
resampled_contour = resample_contour(contour)
|
426 |
+
|
427 |
+
points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
|
428 |
+
for x, y in resampled_contour]
|
429 |
+
|
430 |
+
if len(points_inch) < 3:
|
431 |
+
continue
|
432 |
+
|
433 |
+
tool_polygon = build_tool_polygon(points_inch)
|
434 |
+
original_polygons.append(tool_polygon)
|
435 |
+
|
436 |
+
if finger_clearance:
|
437 |
+
try:
|
438 |
+
tool_polygon, center = place_finger_cut_adjusted(
|
439 |
+
tool_polygon, points_inch, finger_centers, final_polygons_inch
|
440 |
+
)
|
441 |
+
except FingerCutOverlapError:
|
442 |
+
tool_polygon = original_polygons[-1]
|
443 |
+
|
444 |
+
exterior_coords = polygon_to_exterior_coords(tool_polygon)
|
445 |
+
if len(exterior_coords) < 3:
|
446 |
+
continue
|
447 |
+
|
448 |
+
# Apply scale correction
|
449 |
+
corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
|
450 |
+
|
451 |
+
msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
|
452 |
+
final_polygons_inch.append(tool_polygon)
|
453 |
+
|
454 |
+
except ValueError as e:
|
455 |
+
logger.warning(f"Skipping contour: {e}")
|
456 |
+
|
457 |
+
dxf_filepath = os.path.join("./outputs", "out.dxf")
|
458 |
+
doc.saveas(dxf_filepath)
|
459 |
+
return dxf_filepath, final_polygons_inch, original_polygons
|
460 |
+
|
461 |
+
def build_tool_polygon(points_inch):
|
462 |
+
"""Build a polygon from inch-converted points"""
|
463 |
+
return Polygon(points_inch)
|
464 |
+
|
465 |
+
def polygon_to_exterior_coords(poly):
|
466 |
+
"""Extract exterior coordinates from polygon"""
|
467 |
+
logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")
|
468 |
+
|
469 |
+
try:
|
470 |
+
if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
|
471 |
+
logger.debug(f"Performing unary_union on {poly.geom_type}")
|
472 |
+
unified = unary_union(poly)
|
473 |
+
if unified.is_empty:
|
474 |
+
logger.warning("unary_union produced an empty geometry; returning empty list")
|
475 |
+
return []
|
476 |
+
|
477 |
+
if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
|
478 |
+
largest = None
|
479 |
+
max_area = 0.0
|
480 |
+
for g in getattr(unified, "geoms", []):
|
481 |
+
if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
|
482 |
+
max_area = g.area
|
483 |
+
largest = g
|
484 |
+
if largest is None:
|
485 |
+
logger.warning("No valid Polygon found in unified geometry; returning empty list")
|
486 |
+
return []
|
487 |
+
poly = largest
|
488 |
+
else:
|
489 |
+
poly = unified
|
490 |
+
|
491 |
+
if not hasattr(poly, "exterior") or poly.exterior is None:
|
492 |
+
logger.warning("Input geometry has no exterior ring; returning empty list")
|
493 |
+
return []
|
494 |
+
|
495 |
+
raw_coords = list(poly.exterior.coords)
|
496 |
+
total = len(raw_coords)
|
497 |
+
logger.info(f"Extracted {total} raw exterior coordinates")
|
498 |
+
|
499 |
+
if total == 0:
|
500 |
+
return []
|
501 |
+
|
502 |
+
# Subsample coordinates to at most 100 points
|
503 |
+
max_pts = 100
|
504 |
+
if total > max_pts:
|
505 |
+
step = total // max_pts
|
506 |
+
sampled = [raw_coords[i] for i in range(0, total, step)]
|
507 |
+
if sampled[-1] != raw_coords[-1]:
|
508 |
+
sampled.append(raw_coords[-1])
|
509 |
+
logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
|
510 |
+
return sampled
|
511 |
+
else:
|
512 |
+
return raw_coords
|
513 |
+
|
514 |
+
except Exception as e:
|
515 |
+
logger.error(f"Error in polygon_to_exterior_coords: {e}")
|
516 |
+
return []
|
517 |
+
|
518 |
+
def place_finger_cut_adjusted(
|
519 |
+
tool_polygon: Polygon,
|
520 |
+
points_inch: list,
|
521 |
+
existing_centers: list,
|
522 |
+
all_polygons: list,
|
523 |
+
circle_diameter: float = 25.4,
|
524 |
+
min_gap: float = 0.5,
|
525 |
+
max_attempts: int = 100
|
526 |
+
) -> Tuple[Polygon, tuple]:
|
527 |
+
"""Place finger cuts with collision avoidance"""
|
528 |
+
logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")
|
529 |
+
|
530 |
+
def fallback_solution():
|
531 |
+
logger.warning("Using fallback approach for finger cut placement")
|
532 |
+
fallback_center = points_inch[len(points_inch) // 2]
|
533 |
+
r = circle_diameter / 2.0
|
534 |
+
fallback_circle = Point(fallback_center).buffer(r, resolution=32)
|
535 |
+
try:
|
536 |
+
union_poly = tool_polygon.union(fallback_circle)
|
537 |
+
except Exception as e:
|
538 |
+
logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
|
539 |
+
union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))
|
540 |
+
|
541 |
+
existing_centers.append(fallback_center)
|
542 |
+
logger.info(f"Fallback finger cut placed at {fallback_center}")
|
543 |
+
return union_poly, fallback_center
|
544 |
+
|
545 |
+
r = circle_diameter / 2.0
|
546 |
+
needed_center_dist = circle_diameter + min_gap
|
547 |
+
|
548 |
+
raw_perimeter = polygon_to_exterior_coords(tool_polygon)
|
549 |
+
if not raw_perimeter:
|
550 |
+
logger.warning("No valid exterior coords found; using fallback immediately")
|
551 |
+
return fallback_solution()
|
552 |
+
|
553 |
+
if len(raw_perimeter) > 100:
|
554 |
+
step = len(raw_perimeter) // 100
|
555 |
+
perimeter_coords = raw_perimeter[::step]
|
556 |
+
logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
|
557 |
+
else:
|
558 |
+
perimeter_coords = raw_perimeter[:]
|
559 |
+
|
560 |
+
indices = list(range(len(perimeter_coords)))
|
561 |
+
np.random.shuffle(indices)
|
562 |
+
logger.debug(f"Shuffled perimeter indices for candidate order")
|
563 |
+
|
564 |
+
start_time = time.time()
|
565 |
+
timeout_secs = 5.0
|
566 |
+
|
567 |
+
attempts = 0
|
568 |
+
try:
|
569 |
+
while attempts < max_attempts:
|
570 |
+
if time.time() - start_time > timeout_secs - 0.1:
|
571 |
+
logger.warning(f"Approaching timeout after {attempts} attempts")
|
572 |
+
return fallback_solution()
|
573 |
+
|
574 |
+
for idx in indices:
|
575 |
+
if time.time() - start_time > timeout_secs - 0.05:
|
576 |
+
logger.warning("Timeout during candidate-point loop")
|
577 |
+
return fallback_solution()
|
578 |
+
|
579 |
+
cx, cy = perimeter_coords[idx]
|
580 |
+
for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
|
581 |
+
candidate_center = (cx + dx, cy + dy)
|
582 |
+
|
583 |
+
# Check distance to existing finger centers
|
584 |
+
too_close_finger = any(
|
585 |
+
np.hypot(candidate_center[0] - ex, candidate_center[1] - ey)
|
586 |
+
< needed_center_dist
|
587 |
+
for (ex, ey) in existing_centers
|
588 |
+
)
|
589 |
+
if too_close_finger:
|
590 |
+
continue
|
591 |
+
|
592 |
+
# Build candidate circle
|
593 |
+
candidate_circle = Point(candidate_center).buffer(r, resolution=32)
|
594 |
+
|
595 |
+
# Must overlap ≥30% with this polygon
|
596 |
+
try:
|
597 |
+
inter_area = tool_polygon.intersection(candidate_circle).area
|
598 |
+
except Exception:
|
599 |
+
continue
|
600 |
+
|
601 |
+
if inter_area < 0.3 * candidate_circle.area:
|
602 |
+
continue
|
603 |
+
|
604 |
+
# Must not intersect other polygons
|
605 |
+
invalid = False
|
606 |
+
for other_poly in all_polygons:
|
607 |
+
if other_poly.equals(tool_polygon):
|
608 |
+
continue
|
609 |
+
if other_poly.buffer(min_gap).intersects(candidate_circle) or \
|
610 |
+
other_poly.buffer(min_gap).touches(candidate_circle):
|
611 |
+
invalid = True
|
612 |
+
break
|
613 |
+
if invalid:
|
614 |
+
continue
|
615 |
+
|
616 |
+
# Union and return
|
617 |
+
try:
|
618 |
+
union_poly = tool_polygon.union(candidate_circle)
|
619 |
+
if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
|
620 |
+
continue
|
621 |
+
if union_poly.equals(tool_polygon):
|
622 |
+
continue
|
623 |
+
except Exception:
|
624 |
+
continue
|
625 |
+
|
626 |
+
existing_centers.append(candidate_center)
|
627 |
+
logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
|
628 |
+
return union_poly, candidate_center
|
629 |
+
|
630 |
+
attempts += 1
|
631 |
+
if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
|
632 |
+
logger.warning(f"Approaching timeout (attempt {attempts})")
|
633 |
+
return fallback_solution()
|
634 |
+
|
635 |
+
logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
|
636 |
+
return fallback_solution()
|
637 |
+
|
638 |
+
except Exception as e:
|
639 |
+
logger.error(f"Error in place_finger_cut_adjusted: {e}")
|
640 |
+
return fallback_solution()
|
641 |
+
|
642 |
+
def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]:
|
643 |
+
"""Extract outlines from binary image"""
|
644 |
+
contours, _ = cv2.findContours(
|
645 |
+
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
646 |
+
)
|
647 |
+
outline_image = np.full_like(binary_image, 255)
|
648 |
+
return outline_image, contours
|
649 |
+
|
650 |
+
def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
|
651 |
+
"""Round mask edges using contour smoothing"""
|
652 |
+
if radius_mm <= 0 or scaling_factor <= 0:
|
653 |
+
return mask
|
654 |
+
|
655 |
+
radius_px = max(1, int(radius_mm / scaling_factor))
|
656 |
+
|
657 |
+
if np.count_nonzero(mask) < 500:
|
658 |
+
return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
|
659 |
+
|
660 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
661 |
+
contours = [c for c in contours if cv2.contourArea(c) > 100]
|
662 |
+
smoothed_contours = []
|
663 |
+
|
664 |
+
for contour in contours:
|
665 |
+
try:
|
666 |
+
resampled = resample_contour(contour, radius_px)
|
667 |
+
resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
|
668 |
+
smoothed_contours.append(resampled)
|
669 |
+
except Exception as e:
|
670 |
+
logger.warning(f"Error smoothing contour: {e}")
|
671 |
+
smoothed_contours.append(contour)
|
672 |
+
|
673 |
+
rounded = np.zeros_like(mask)
|
674 |
+
cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
|
675 |
+
|
676 |
+
return rounded
|
677 |
+
|
678 |
+
def cleanup_memory():
|
679 |
+
"""Clean up memory after processing"""
|
680 |
+
if torch.cuda.is_available():
|
681 |
+
torch.cuda.empty_cache()
|
682 |
+
gc.collect()
|
683 |
+
logger.info("Memory cleanup completed")
|
684 |
+
|
685 |
+
def cleanup_models():
|
686 |
+
"""Unload models to free memory"""
|
687 |
+
global paper_detector_global, u2net_global, birefnet
|
688 |
+
if paper_detector_global is not None:
|
689 |
+
del paper_detector_global
|
690 |
+
paper_detector_global = None
|
691 |
+
if u2net_global is not None:
|
692 |
+
del u2net_global
|
693 |
+
u2net_global = None
|
694 |
+
if birefnet is not None:
|
695 |
+
del birefnet
|
696 |
+
birefnet = None
|
697 |
+
cleanup_memory()
|
698 |
+
|
699 |
+
def make_square(img: np.ndarray):
|
700 |
+
"""Make the image square by padding"""
|
701 |
+
height, width = img.shape[:2]
|
702 |
+
max_dim = max(height, width)
|
703 |
+
|
704 |
+
pad_height = (max_dim - height) // 2
|
705 |
+
pad_width = (max_dim - width) // 2
|
706 |
+
|
707 |
+
pad_height_extra = max_dim - height - 2 * pad_height
|
708 |
+
pad_width_extra = max_dim - width - 2 * pad_width
|
709 |
+
|
710 |
+
if len(img.shape) == 3:
|
711 |
+
padded = np.pad(
|
712 |
+
img,
|
713 |
+
(
|
714 |
+
(pad_height, pad_height + pad_height_extra),
|
715 |
+
(pad_width, pad_width + pad_width_extra),
|
716 |
+
(0, 0),
|
717 |
+
),
|
718 |
+
mode="edge",
|
719 |
+
)
|
720 |
+
else:
|
721 |
+
padded = np.pad(
|
722 |
+
img,
|
723 |
+
(
|
724 |
+
(pad_height, pad_height + pad_height_extra),
|
725 |
+
(pad_width, pad_width + pad_width_extra),
|
726 |
+
),
|
727 |
+
mode="edge",
|
728 |
+
)
|
729 |
+
|
730 |
+
return padded
|
731 |
+
|
732 |
+
def predict_with_paper(image, paper_size, offset, offset_unit, edge_radius, finger_clearance=False):
|
733 |
+
"""Main prediction function using paper as reference"""
|
734 |
+
|
735 |
+
if offset_unit == "inches":
|
736 |
+
offset *= 25.4
|
737 |
+
|
738 |
+
if edge_radius is None or edge_radius == 0:
|
739 |
+
edge_radius = 0.0001
|
740 |
+
|
741 |
+
if offset < 0:
|
742 |
+
raise gr.Error("Offset Value Can't be negative")
|
743 |
+
|
744 |
+
try:
|
745 |
+
# Detect paper bounds and calculate scaling factor
|
746 |
+
paper_contour, scaling_factor = detect_paper_bounds(image, paper_size)
|
747 |
+
logger.info(f"Paper detected with scaling factor: {scaling_factor:.4f} mm/px")
|
748 |
+
|
749 |
+
except PaperNotDetectedError as e:
|
750 |
+
return (
|
751 |
+
None, None, None, None,
|
752 |
+
f"Error: {str(e)}"
|
753 |
+
)
|
754 |
+
except Exception as e:
|
755 |
+
raise gr.Error(f"Error processing image: {str(e)}")
|
756 |
+
|
757 |
+
try:
|
758 |
+
# Remove background from main objects
|
759 |
+
orig_size = image.shape[:2]
|
760 |
+
objects_mask = remove_bg(image)
|
761 |
+
processed_size = objects_mask.shape[:2]
|
762 |
+
|
763 |
+
# Resize mask to match original image
|
764 |
+
objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0]))
|
765 |
+
|
766 |
+
# Remove paper area from mask to focus only on objects
|
767 |
+
objects_mask = exclude_paper_area(objects_mask, paper_contour)
|
768 |
+
|
769 |
+
# Validate single object
|
770 |
+
validate_single_object(objects_mask, paper_contour)
|
771 |
+
|
772 |
+
except (MultipleObjectsError, NoObjectDetectedError) as e:
|
773 |
+
return (
|
774 |
+
None, None, None, None,
|
775 |
+
f"Error: {str(e)}"
|
776 |
+
)
|
777 |
+
except Exception as e:
|
778 |
+
raise gr.Error(f"Error in object detection: {str(e)}")
|
779 |
+
|
780 |
+
# Apply edge rounding if specified
|
781 |
+
if edge_radius > 0:
|
782 |
+
rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
|
783 |
+
else:
|
784 |
+
rounded_mask = objects_mask.copy()
|
785 |
+
|
786 |
+
# Apply dilation for offset
|
787 |
+
if offset > 0:
|
788 |
+
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
|
789 |
+
kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
|
790 |
+
dilated_mask = cv2.dilate(rounded_mask, kernel)
|
791 |
+
else:
|
792 |
+
dilated_mask = rounded_mask.copy()
|
793 |
+
|
794 |
+
# Save original dilated mask for output
|
795 |
+
Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
|
796 |
+
dilated_mask_orig = dilated_mask.copy()
|
797 |
+
|
798 |
+
# Extract contours
|
799 |
+
outlines, contours = extract_outlines(dilated_mask)
|
800 |
+
|
801 |
+
try:
|
802 |
+
# Generate DXF
|
803 |
+
dxf, finger_polygons, original_polygons = save_dxf_spline(
|
804 |
+
contours,
|
805 |
+
scaling_factor,
|
806 |
+
processed_size[0],
|
807 |
+
finger_clearance=(finger_clearance == "On")
|
808 |
+
)
|
809 |
+
except FingerCutOverlapError as e:
|
810 |
+
raise gr.Error(str(e))
|
811 |
+
|
812 |
+
# Create annotated image
|
813 |
+
shrunked_img_contours = image.copy()
|
814 |
+
|
815 |
+
if finger_clearance == "On":
|
816 |
+
outlines = np.full_like(dilated_mask, 255)
|
817 |
+
for poly in finger_polygons:
|
818 |
+
try:
|
819 |
+
coords = np.array([
|
820 |
+
(int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
|
821 |
+
for x, y in poly.exterior.coords
|
822 |
+
], np.int32).reshape((-1, 1, 2))
|
823 |
+
|
824 |
+
cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2)
|
825 |
+
cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
|
826 |
+
except Exception as e:
|
827 |
+
logger.warning(f"Failed to draw finger cut: {e}")
|
828 |
+
continue
|
829 |
+
else:
|
830 |
+
outlines = np.full_like(dilated_mask, 255)
|
831 |
+
cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2)
|
832 |
+
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
|
833 |
+
|
834 |
+
# Draw paper bounds on annotated image
|
835 |
+
cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3)
|
836 |
+
|
837 |
+
# Add paper size text
|
838 |
+
paper_text = f"Paper: {paper_size}"
|
839 |
+
cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
840 |
+
|
841 |
+
cleanup_models()
|
842 |
+
|
843 |
+
return (
|
844 |
+
shrunked_img_contours,
|
845 |
+
outlines,
|
846 |
+
dxf,
|
847 |
+
dilated_mask_orig,
|
848 |
+
f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}"
|
849 |
+
)
|
850 |
+
|
851 |
+
def predict_full_paper(image, paper_size, enable_fillet, fillet_value_mm, enable_finger_cut, selected_outputs):
|
852 |
+
"""
|
853 |
+
Full prediction function with paper reference and flexible outputs
|
854 |
+
Returns DXF + conditionally selected additional outputs
|
855 |
+
"""
|
856 |
+
radius = fillet_value_mm if enable_fillet == "On" else 0
|
857 |
+
finger_flag = "On" if enable_finger_cut == "On" else "Off"
|
858 |
+
|
859 |
+
# Always get all outputs from predict_with_paper
|
860 |
+
ann, outlines, dxf_path, mask, scale_info = predict_with_paper(
|
861 |
+
image,
|
862 |
+
paper_size,
|
863 |
+
offset=0, # No offset for now, can be added as parameter later
|
864 |
+
offset_unit="mm",
|
865 |
+
edge_radius=radius,
|
866 |
+
finger_clearance=finger_flag,
|
867 |
+
)
|
868 |
+
|
869 |
+
# Return based on selected outputs
|
870 |
+
return (
|
871 |
+
dxf_path, # Always return DXF
|
872 |
+
ann if "Annotated Image" in selected_outputs else None,
|
873 |
+
outlines if "Outlines" in selected_outputs else None,
|
874 |
+
mask if "Mask" in selected_outputs else None,
|
875 |
+
scale_info # Always return scaling info
|
876 |
+
)
|
877 |
+
|
878 |
+
# Gradio Interface
|
879 |
+
if __name__ == "__main__":
|
880 |
+
os.makedirs("./outputs", exist_ok=True)
|
881 |
+
|
882 |
+
with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
|
883 |
+
gr.Markdown("""
|
884 |
+
# Paper-Based DXF Generator
|
885 |
+
|
886 |
+
Upload an image with a single object placed on paper (A4, A3, or US Letter).
|
887 |
+
The paper serves as a size reference for accurate DXF generation.
|
888 |
+
|
889 |
+
**Instructions:**
|
890 |
+
1. Place a single object on paper
|
891 |
+
2. Select the correct paper size
|
892 |
+
3. Configure options as needed
|
893 |
+
4. Click Submit to generate DXF
|
894 |
+
""")
|
895 |
+
|
896 |
+
with gr.Row():
|
897 |
+
with gr.Column():
|
898 |
+
input_image = gr.Image(
|
899 |
+
label="Input Image (Object on Paper)",
|
900 |
+
type="numpy",
|
901 |
+
height=400
|
902 |
+
)
|
903 |
+
|
904 |
+
paper_size = gr.Radio(
|
905 |
+
choices=["A4", "A3", "US Letter"],
|
906 |
+
value="A4",
|
907 |
+
label="Paper Size",
|
908 |
+
info="Select the paper size used in your image"
|
909 |
+
)
|
910 |
+
|
911 |
+
with gr.Group():
|
912 |
+
gr.Markdown("### Edge Rounding")
|
913 |
+
enable_fillet = gr.Radio(
|
914 |
+
choices=["On", "Off"],
|
915 |
+
value="Off",
|
916 |
+
label="Enable Edge Rounding",
|
917 |
+
interactive=True
|
918 |
+
)
|
919 |
+
|
920 |
+
fillet_value_mm = gr.Slider(
|
921 |
+
minimum=0,
|
922 |
+
maximum=20,
|
923 |
+
step=1,
|
924 |
+
value=5,
|
925 |
+
label="Edge Radius (mm)",
|
926 |
+
visible=False,
|
927 |
+
interactive=True
|
928 |
+
)
|
929 |
+
|
930 |
+
with gr.Group():
|
931 |
+
gr.Markdown("### Finger Cuts")
|
932 |
+
enable_finger_cut = gr.Radio(
|
933 |
+
choices=["On", "Off"],
|
934 |
+
value="Off",
|
935 |
+
label="Enable Finger Cuts",
|
936 |
+
info="Add circular cuts for easier handling"
|
937 |
+
)
|
938 |
+
|
939 |
+
output_options = gr.CheckboxGroup(
|
940 |
+
choices=["Annotated Image", "Outlines", "Mask"],
|
941 |
+
value=[],
|
942 |
+
label="Additional Outputs",
|
943 |
+
info="DXF is always included"
|
944 |
+
)
|
945 |
+
|
946 |
+
submit_btn = gr.Button("Generate DXF", variant="primary", size="lg")
|
947 |
+
|
948 |
+
with gr.Column():
|
949 |
+
with gr.Group():
|
950 |
+
gr.Markdown("### Generated Files")
|
951 |
+
dxf_file = gr.File(label="DXF File", file_types=[".dxf"])
|
952 |
+
scale_info = gr.Textbox(label="Scaling Information", interactive=False)
|
953 |
+
|
954 |
+
with gr.Group():
|
955 |
+
gr.Markdown("### Preview Images")
|
956 |
+
output_image = gr.Image(label="Annotated Image", visible=False)
|
957 |
+
outlines_image = gr.Image(label="Outlines", visible=False)
|
958 |
+
mask_image = gr.Image(label="Mask", visible=False)
|
959 |
+
|
960 |
+
# Dynamic visibility updates
|
961 |
+
def toggle_fillet(choice):
|
962 |
+
return gr.update(visible=(choice == "On"))
|
963 |
+
|
964 |
+
def update_outputs_visibility(selected):
|
965 |
+
return [
|
966 |
+
gr.update(visible="Annotated Image" in selected),
|
967 |
+
gr.update(visible="Outlines" in selected),
|
968 |
+
gr.update(visible="Mask" in selected)
|
969 |
+
]
|
970 |
+
|
971 |
+
# Event handlers
|
972 |
+
enable_fillet.change(
|
973 |
+
fn=toggle_fillet,
|
974 |
+
inputs=enable_fillet,
|
975 |
+
outputs=fillet_value_mm
|
976 |
+
)
|
977 |
+
|
978 |
+
output_options.change(
|
979 |
+
fn=update_outputs_visibility,
|
980 |
+
inputs=output_options,
|
981 |
+
outputs=[output_image, outlines_image, mask_image]
|
982 |
+
)
|
983 |
+
|
984 |
+
submit_btn.click(
|
985 |
+
fn=predict_full_paper,
|
986 |
+
inputs=[
|
987 |
+
input_image,
|
988 |
+
paper_size,
|
989 |
+
enable_fillet,
|
990 |
+
fillet_value_mm,
|
991 |
+
enable_finger_cut,
|
992 |
+
output_options
|
993 |
+
],
|
994 |
+
outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
|
995 |
+
)
|
996 |
+
|
997 |
+
# Example gallery
|
998 |
+
with gr.Row():
|
999 |
+
gr.Markdown("""
|
1000 |
+
### Tips for Best Results:
|
1001 |
+
- Ensure good lighting and clear paper edges
|
1002 |
+
- Place object completely on the paper
|
1003 |
+
- Avoid shadows that might interfere with detection
|
1004 |
+
- Use high contrast between object and paper
|
1005 |
+
""")
|
1006 |
+
|
1007 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
transformers==4.48.3
|
3 |
+
ultralytics==8.3.9
|
4 |
+
pydantic==2.10.6
|
5 |
+
ezdxf==1.3.5
|
6 |
+
gradio==5.15.0
|
7 |
+
kornia==0.8.0
|
8 |
+
timm==1.0.14
|
9 |
+
einops==0.8.1
|
10 |
+
torchvision==0.20.1
|
11 |
+
torch==2.5.1
|
12 |
+
torchaudio==2.5.1
|
13 |
+
shapely
|
scalingtestupdated.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from typing import Union
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
|
8 |
+
class ScalingSquareDetector:
|
9 |
+
def __init__(self, feature_detector="ORB", debug=False):
|
10 |
+
"""
|
11 |
+
Initialize the detector with the desired feature matching algorithm.
|
12 |
+
:param feature_detector: "ORB" or "SIFT" (default is "ORB").
|
13 |
+
:param debug: If True, saves intermediate images for debugging.
|
14 |
+
"""
|
15 |
+
self.feature_detector = feature_detector
|
16 |
+
self.debug = debug
|
17 |
+
self.detector = self._initialize_detector()
|
18 |
+
|
19 |
+
def _initialize_detector(self):
|
20 |
+
"""
|
21 |
+
Initialize the chosen feature detector.
|
22 |
+
:return: OpenCV detector object.
|
23 |
+
"""
|
24 |
+
if self.feature_detector.upper() == "SIFT":
|
25 |
+
return cv2.SIFT_create()
|
26 |
+
elif self.feature_detector.upper() == "ORB":
|
27 |
+
return cv2.ORB_create()
|
28 |
+
else:
|
29 |
+
raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")
|
30 |
+
|
31 |
+
def find_scaling_square(
|
32 |
+
self, target_image, known_size_mm, roi_margin=30
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
Detect the scaling square in the target image based on the reference image.
|
36 |
+
:param reference_image_path: Path to the reference image of the square.
|
37 |
+
:param target_image_path: Path to the target image containing the square.
|
38 |
+
:param known_size_mm: Physical size of the square in millimeters.
|
39 |
+
:param roi_margin: Margin to expand the ROI around the detected square (in pixels).
|
40 |
+
:return: Scaling factor (mm per pixel).
|
41 |
+
"""
|
42 |
+
contours, _ = cv2.findContours(
|
43 |
+
target_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
44 |
+
)
|
45 |
+
|
46 |
+
if not contours:
|
47 |
+
raise ValueError("No contours found in the cropped ROI.")
|
48 |
+
|
49 |
+
# # Select the largest square-like contour
|
50 |
+
print(f"No of contours: {len(contours)}")
|
51 |
+
largest_square = None
|
52 |
+
# largest_square_area = 0
|
53 |
+
# for contour in contours:
|
54 |
+
# x_c, y_c, w_c, h_c = cv2.boundingRect(contour)
|
55 |
+
# aspect_ratio = w_c / float(h_c)
|
56 |
+
# if 0.9 <= aspect_ratio <= 1.1:
|
57 |
+
# peri = cv2.arcLength(contour, True)
|
58 |
+
# approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
|
59 |
+
# if len(approx) == 4:
|
60 |
+
# area = cv2.contourArea(contour)
|
61 |
+
# if area > largest_square_area:
|
62 |
+
# largest_square = contour
|
63 |
+
# largest_square_area = area
|
64 |
+
|
65 |
+
for contour in contours:
|
66 |
+
largest_square = contour
|
67 |
+
|
68 |
+
# if largest_square is None:
|
69 |
+
# raise ValueError("No square-like contour found in the ROI.")
|
70 |
+
|
71 |
+
# Draw the largest contour on the original image
|
72 |
+
target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR)
|
73 |
+
cv2.drawContours(
|
74 |
+
target_image_color, largest_square, -1, (255, 0, 0), 3
|
75 |
+
)
|
76 |
+
|
77 |
+
# if self.debug:
|
78 |
+
cv2.imwrite("largest_contour.jpg", target_image_color)
|
79 |
+
|
80 |
+
# Calculate the bounding rectangle of the largest contour
|
81 |
+
x, y, w, h = cv2.boundingRect(largest_square)
|
82 |
+
square_width_px = w
|
83 |
+
square_height_px = h
|
84 |
+
print(f"Reference object size: {known_size_mm} mm")
|
85 |
+
print(f"width: {square_width_px} px")
|
86 |
+
print(f"height: {square_height_px} px")
|
87 |
+
|
88 |
+
# Calculate the scaling factor
|
89 |
+
avg_square_size_px = (square_width_px + square_height_px) / 2
|
90 |
+
print(f"avg square size: {avg_square_size_px} px")
|
91 |
+
scaling_factor = known_size_mm / avg_square_size_px # mm per pixel
|
92 |
+
print(f"scaling factor: {scaling_factor} mm per pixel")
|
93 |
+
|
94 |
+
return scaling_factor #, square_height_px, square_width_px, roi_binary
|
95 |
+
|
96 |
+
def draw_debug_images(self, output_folder):
|
97 |
+
"""
|
98 |
+
Save debug images if enabled.
|
99 |
+
:param output_folder: Directory to save debug images.
|
100 |
+
"""
|
101 |
+
if self.debug:
|
102 |
+
if not os.path.exists(output_folder):
|
103 |
+
os.makedirs(output_folder)
|
104 |
+
debug_images = ["largest_contour.jpg"]
|
105 |
+
for img_name in debug_images:
|
106 |
+
if os.path.exists(img_name):
|
107 |
+
os.rename(img_name, os.path.join(output_folder, img_name))
|
108 |
+
|
109 |
+
|
110 |
+
def calculate_scaling_factor(
|
111 |
+
target_image,
|
112 |
+
reference_obj_size_mm,
|
113 |
+
feature_detector="ORB",
|
114 |
+
debug=False,
|
115 |
+
roi_margin=30,
|
116 |
+
):
|
117 |
+
# Initialize detector
|
118 |
+
detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug)
|
119 |
+
|
120 |
+
# Find scaling square and calculate scaling factor
|
121 |
+
scaling_factor = detector.find_scaling_square(
|
122 |
+
target_image=target_image,
|
123 |
+
known_size_mm=reference_obj_size_mm,
|
124 |
+
roi_margin=roi_margin,
|
125 |
+
)
|
126 |
+
|
127 |
+
# Save debug images
|
128 |
+
if debug:
|
129 |
+
detector.draw_debug_images("debug_outputs")
|
130 |
+
|
131 |
+
return scaling_factor
|
132 |
+
|
133 |
+
|
134 |
+
# Example usage:
|
135 |
+
if __name__ == "__main__":
|
136 |
+
import os
|
137 |
+
from PIL import Image
|
138 |
+
from ultralytics import YOLO
|
139 |
+
from app import yolo_detect, shrink_bbox
|
140 |
+
from ultralytics.utils.plotting import save_one_box
|
141 |
+
|
142 |
+
for idx, file in enumerate(os.listdir("./sample_images")):
|
143 |
+
img = np.array(Image.open(os.path.join("./sample_images", file)))
|
144 |
+
img = yolo_detect(img, ['box'])
|
145 |
+
model = YOLO("./best.pt")
|
146 |
+
res = model.predict(img, conf=0.6)
|
147 |
+
|
148 |
+
box_img = save_one_box(res[0].cpu().boxes.xyxy, im=res[0].orig_img, save=False)
|
149 |
+
# img = shrink_bbox(box_img, 1.20)
|
150 |
+
cv2.imwrite(f"./outputs/{idx}_{file}", box_img)
|
151 |
+
|
152 |
+
print("File: ",f"./outputs/{idx}_{file}")
|
153 |
+
try:
|
154 |
+
|
155 |
+
scaling_factor = calculate_scaling_factor(
|
156 |
+
target_image=box_img,
|
157 |
+
known_square_size_mm=20,
|
158 |
+
feature_detector="ORB",
|
159 |
+
debug=False,
|
160 |
+
roi_margin=90,
|
161 |
+
)
|
162 |
+
# cv2.imwrite(f"./outputs/{idx}_binary_{file}", roi_binary)
|
163 |
+
|
164 |
+
# Square size in mm
|
165 |
+
# square_size_mm = 12.7
|
166 |
+
|
167 |
+
# # Compute the calculated scaling factors and compare
|
168 |
+
# calculated_scaling_factor = square_size_mm / height_px
|
169 |
+
# discrepancy = abs(calculated_scaling_factor - scaling_factor)
|
170 |
+
# import pprint
|
171 |
+
# pprint.pprint({
|
172 |
+
# "height_px": height_px,
|
173 |
+
# "width_px": width_px,
|
174 |
+
# "given_scaling_factor": scaling_factor,
|
175 |
+
# "calculated_scaling_factor": calculated_scaling_factor,
|
176 |
+
# "discrepancy": discrepancy,
|
177 |
+
# })
|
178 |
+
|
179 |
+
|
180 |
+
print(f"Scaling Factor (mm per pixel): {scaling_factor:.6f}")
|
181 |
+
except Exception as e:
|
182 |
+
from traceback import print_exc
|
183 |
+
print(print_exc())
|
184 |
+
print(f"Error: {e}")
|
u2netp.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7567cde013fb64813973ce6e1ecc25a80c05c3ca7adbc5a54f3c3d90991b854
|
3 |
+
size 4683258
|
u2netp.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class REBNCONV(nn.Module):
|
6 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1):
|
7 |
+
super(REBNCONV,self).__init__()
|
8 |
+
|
9 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
|
10 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
11 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
12 |
+
|
13 |
+
def forward(self,x):
|
14 |
+
|
15 |
+
hx = x
|
16 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
17 |
+
|
18 |
+
return xout
|
19 |
+
|
20 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
21 |
+
def _upsample_like(src,tar):
|
22 |
+
|
23 |
+
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
24 |
+
|
25 |
+
return src
|
26 |
+
|
27 |
+
|
28 |
+
### RSU-7 ###
|
29 |
+
class RSU7(nn.Module):#UNet07DRES(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
32 |
+
super(RSU7,self).__init__()
|
33 |
+
|
34 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
35 |
+
|
36 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
37 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
38 |
+
|
39 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
40 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
41 |
+
|
42 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
43 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
44 |
+
|
45 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
46 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
47 |
+
|
48 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
49 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
50 |
+
|
51 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
52 |
+
|
53 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
54 |
+
|
55 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
56 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
57 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
58 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
59 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
60 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
61 |
+
|
62 |
+
def forward(self,x):
|
63 |
+
|
64 |
+
hx = x
|
65 |
+
hxin = self.rebnconvin(hx)
|
66 |
+
|
67 |
+
hx1 = self.rebnconv1(hxin)
|
68 |
+
hx = self.pool1(hx1)
|
69 |
+
|
70 |
+
hx2 = self.rebnconv2(hx)
|
71 |
+
hx = self.pool2(hx2)
|
72 |
+
|
73 |
+
hx3 = self.rebnconv3(hx)
|
74 |
+
hx = self.pool3(hx3)
|
75 |
+
|
76 |
+
hx4 = self.rebnconv4(hx)
|
77 |
+
hx = self.pool4(hx4)
|
78 |
+
|
79 |
+
hx5 = self.rebnconv5(hx)
|
80 |
+
hx = self.pool5(hx5)
|
81 |
+
|
82 |
+
hx6 = self.rebnconv6(hx)
|
83 |
+
|
84 |
+
hx7 = self.rebnconv7(hx6)
|
85 |
+
|
86 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
87 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
88 |
+
|
89 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
90 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
91 |
+
|
92 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
93 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
94 |
+
|
95 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
96 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
97 |
+
|
98 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
99 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
100 |
+
|
101 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
102 |
+
|
103 |
+
return hx1d + hxin
|
104 |
+
|
105 |
+
### RSU-6 ###
|
106 |
+
class RSU6(nn.Module):#UNet06DRES(nn.Module):
|
107 |
+
|
108 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
109 |
+
super(RSU6,self).__init__()
|
110 |
+
|
111 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
112 |
+
|
113 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
114 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
115 |
+
|
116 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
117 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
118 |
+
|
119 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
120 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
121 |
+
|
122 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
123 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
124 |
+
|
125 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
126 |
+
|
127 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
128 |
+
|
129 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
130 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
131 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
132 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
133 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
134 |
+
|
135 |
+
def forward(self,x):
|
136 |
+
|
137 |
+
hx = x
|
138 |
+
|
139 |
+
hxin = self.rebnconvin(hx)
|
140 |
+
|
141 |
+
hx1 = self.rebnconv1(hxin)
|
142 |
+
hx = self.pool1(hx1)
|
143 |
+
|
144 |
+
hx2 = self.rebnconv2(hx)
|
145 |
+
hx = self.pool2(hx2)
|
146 |
+
|
147 |
+
hx3 = self.rebnconv3(hx)
|
148 |
+
hx = self.pool3(hx3)
|
149 |
+
|
150 |
+
hx4 = self.rebnconv4(hx)
|
151 |
+
hx = self.pool4(hx4)
|
152 |
+
|
153 |
+
hx5 = self.rebnconv5(hx)
|
154 |
+
|
155 |
+
hx6 = self.rebnconv6(hx5)
|
156 |
+
|
157 |
+
|
158 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
159 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
160 |
+
|
161 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
162 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
163 |
+
|
164 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
165 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
166 |
+
|
167 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
168 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
169 |
+
|
170 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
171 |
+
|
172 |
+
return hx1d + hxin
|
173 |
+
|
174 |
+
### RSU-5 ###
|
175 |
+
class RSU5(nn.Module):#UNet05DRES(nn.Module):
|
176 |
+
|
177 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
178 |
+
super(RSU5,self).__init__()
|
179 |
+
|
180 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
181 |
+
|
182 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
183 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
184 |
+
|
185 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
186 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
187 |
+
|
188 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
189 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
190 |
+
|
191 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
192 |
+
|
193 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
194 |
+
|
195 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
196 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
197 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
198 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
199 |
+
|
200 |
+
def forward(self,x):
|
201 |
+
|
202 |
+
hx = x
|
203 |
+
|
204 |
+
hxin = self.rebnconvin(hx)
|
205 |
+
|
206 |
+
hx1 = self.rebnconv1(hxin)
|
207 |
+
hx = self.pool1(hx1)
|
208 |
+
|
209 |
+
hx2 = self.rebnconv2(hx)
|
210 |
+
hx = self.pool2(hx2)
|
211 |
+
|
212 |
+
hx3 = self.rebnconv3(hx)
|
213 |
+
hx = self.pool3(hx3)
|
214 |
+
|
215 |
+
hx4 = self.rebnconv4(hx)
|
216 |
+
|
217 |
+
hx5 = self.rebnconv5(hx4)
|
218 |
+
|
219 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
220 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
221 |
+
|
222 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
223 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
224 |
+
|
225 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
226 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
227 |
+
|
228 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
229 |
+
|
230 |
+
return hx1d + hxin
|
231 |
+
|
232 |
+
### RSU-4 ###
|
233 |
+
class RSU4(nn.Module):#UNet04DRES(nn.Module):
|
234 |
+
|
235 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
236 |
+
super(RSU4,self).__init__()
|
237 |
+
|
238 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
239 |
+
|
240 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
241 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
242 |
+
|
243 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
244 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
245 |
+
|
246 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
247 |
+
|
248 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
249 |
+
|
250 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
251 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
252 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
253 |
+
|
254 |
+
def forward(self,x):
|
255 |
+
|
256 |
+
hx = x
|
257 |
+
|
258 |
+
hxin = self.rebnconvin(hx)
|
259 |
+
|
260 |
+
hx1 = self.rebnconv1(hxin)
|
261 |
+
hx = self.pool1(hx1)
|
262 |
+
|
263 |
+
hx2 = self.rebnconv2(hx)
|
264 |
+
hx = self.pool2(hx2)
|
265 |
+
|
266 |
+
hx3 = self.rebnconv3(hx)
|
267 |
+
|
268 |
+
hx4 = self.rebnconv4(hx3)
|
269 |
+
|
270 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
271 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
272 |
+
|
273 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
274 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
275 |
+
|
276 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
277 |
+
|
278 |
+
return hx1d + hxin
|
279 |
+
|
280 |
+
### RSU-4F ###
|
281 |
+
class RSU4F(nn.Module):#UNet04FRES(nn.Module):
|
282 |
+
|
283 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
284 |
+
super(RSU4F,self).__init__()
|
285 |
+
|
286 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
287 |
+
|
288 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
289 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
290 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
291 |
+
|
292 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
293 |
+
|
294 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
295 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
296 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
297 |
+
|
298 |
+
def forward(self,x):
|
299 |
+
|
300 |
+
hx = x
|
301 |
+
|
302 |
+
hxin = self.rebnconvin(hx)
|
303 |
+
|
304 |
+
hx1 = self.rebnconv1(hxin)
|
305 |
+
hx2 = self.rebnconv2(hx1)
|
306 |
+
hx3 = self.rebnconv3(hx2)
|
307 |
+
|
308 |
+
hx4 = self.rebnconv4(hx3)
|
309 |
+
|
310 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
311 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
312 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
313 |
+
|
314 |
+
return hx1d + hxin
|
315 |
+
|
316 |
+
|
317 |
+
##### U^2-Net ####
|
318 |
+
class U2NET(nn.Module):
|
319 |
+
|
320 |
+
def __init__(self,in_ch=3,out_ch=1):
|
321 |
+
super(U2NET,self).__init__()
|
322 |
+
|
323 |
+
self.stage1 = RSU7(in_ch,32,64)
|
324 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
325 |
+
|
326 |
+
self.stage2 = RSU6(64,32,128)
|
327 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
328 |
+
|
329 |
+
self.stage3 = RSU5(128,64,256)
|
330 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
331 |
+
|
332 |
+
self.stage4 = RSU4(256,128,512)
|
333 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
334 |
+
|
335 |
+
self.stage5 = RSU4F(512,256,512)
|
336 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
337 |
+
|
338 |
+
self.stage6 = RSU4F(512,256,512)
|
339 |
+
|
340 |
+
# decoder
|
341 |
+
self.stage5d = RSU4F(1024,256,512)
|
342 |
+
self.stage4d = RSU4(1024,128,256)
|
343 |
+
self.stage3d = RSU5(512,64,128)
|
344 |
+
self.stage2d = RSU6(256,32,64)
|
345 |
+
self.stage1d = RSU7(128,16,64)
|
346 |
+
|
347 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
348 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
349 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
350 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
351 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
352 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
353 |
+
|
354 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
355 |
+
|
356 |
+
def forward(self,x):
|
357 |
+
|
358 |
+
hx = x
|
359 |
+
|
360 |
+
#stage 1
|
361 |
+
hx1 = self.stage1(hx)
|
362 |
+
hx = self.pool12(hx1)
|
363 |
+
|
364 |
+
#stage 2
|
365 |
+
hx2 = self.stage2(hx)
|
366 |
+
hx = self.pool23(hx2)
|
367 |
+
|
368 |
+
#stage 3
|
369 |
+
hx3 = self.stage3(hx)
|
370 |
+
hx = self.pool34(hx3)
|
371 |
+
|
372 |
+
#stage 4
|
373 |
+
hx4 = self.stage4(hx)
|
374 |
+
hx = self.pool45(hx4)
|
375 |
+
|
376 |
+
#stage 5
|
377 |
+
hx5 = self.stage5(hx)
|
378 |
+
hx = self.pool56(hx5)
|
379 |
+
|
380 |
+
#stage 6
|
381 |
+
hx6 = self.stage6(hx)
|
382 |
+
hx6up = _upsample_like(hx6,hx5)
|
383 |
+
|
384 |
+
#-------------------- decoder --------------------
|
385 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
386 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
387 |
+
|
388 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
389 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
390 |
+
|
391 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
392 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
393 |
+
|
394 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
395 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
396 |
+
|
397 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
398 |
+
|
399 |
+
|
400 |
+
#side output
|
401 |
+
d1 = self.side1(hx1d)
|
402 |
+
|
403 |
+
d2 = self.side2(hx2d)
|
404 |
+
d2 = _upsample_like(d2,d1)
|
405 |
+
|
406 |
+
d3 = self.side3(hx3d)
|
407 |
+
d3 = _upsample_like(d3,d1)
|
408 |
+
|
409 |
+
d4 = self.side4(hx4d)
|
410 |
+
d4 = _upsample_like(d4,d1)
|
411 |
+
|
412 |
+
d5 = self.side5(hx5d)
|
413 |
+
d5 = _upsample_like(d5,d1)
|
414 |
+
|
415 |
+
d6 = self.side6(hx6)
|
416 |
+
d6 = _upsample_like(d6,d1)
|
417 |
+
|
418 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
419 |
+
|
420 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
421 |
+
|
422 |
+
### U^2-Net small ###
|
423 |
+
class U2NETP(nn.Module):
|
424 |
+
|
425 |
+
def __init__(self,in_ch=3,out_ch=1):
|
426 |
+
super(U2NETP,self).__init__()
|
427 |
+
|
428 |
+
self.stage1 = RSU7(in_ch,16,64)
|
429 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
430 |
+
|
431 |
+
self.stage2 = RSU6(64,16,64)
|
432 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
433 |
+
|
434 |
+
self.stage3 = RSU5(64,16,64)
|
435 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
436 |
+
|
437 |
+
self.stage4 = RSU4(64,16,64)
|
438 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
439 |
+
|
440 |
+
self.stage5 = RSU4F(64,16,64)
|
441 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
442 |
+
|
443 |
+
self.stage6 = RSU4F(64,16,64)
|
444 |
+
|
445 |
+
# decoder
|
446 |
+
self.stage5d = RSU4F(128,16,64)
|
447 |
+
self.stage4d = RSU4(128,16,64)
|
448 |
+
self.stage3d = RSU5(128,16,64)
|
449 |
+
self.stage2d = RSU6(128,16,64)
|
450 |
+
self.stage1d = RSU7(128,16,64)
|
451 |
+
|
452 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
453 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
454 |
+
self.side3 = nn.Conv2d(64,out_ch,3,padding=1)
|
455 |
+
self.side4 = nn.Conv2d(64,out_ch,3,padding=1)
|
456 |
+
self.side5 = nn.Conv2d(64,out_ch,3,padding=1)
|
457 |
+
self.side6 = nn.Conv2d(64,out_ch,3,padding=1)
|
458 |
+
|
459 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
460 |
+
|
461 |
+
def forward(self,x):
|
462 |
+
|
463 |
+
hx = x
|
464 |
+
|
465 |
+
#stage 1
|
466 |
+
hx1 = self.stage1(hx)
|
467 |
+
hx = self.pool12(hx1)
|
468 |
+
|
469 |
+
#stage 2
|
470 |
+
hx2 = self.stage2(hx)
|
471 |
+
hx = self.pool23(hx2)
|
472 |
+
|
473 |
+
#stage 3
|
474 |
+
hx3 = self.stage3(hx)
|
475 |
+
hx = self.pool34(hx3)
|
476 |
+
|
477 |
+
#stage 4
|
478 |
+
hx4 = self.stage4(hx)
|
479 |
+
hx = self.pool45(hx4)
|
480 |
+
|
481 |
+
#stage 5
|
482 |
+
hx5 = self.stage5(hx)
|
483 |
+
hx = self.pool56(hx5)
|
484 |
+
|
485 |
+
#stage 6
|
486 |
+
hx6 = self.stage6(hx)
|
487 |
+
hx6up = _upsample_like(hx6,hx5)
|
488 |
+
|
489 |
+
#decoder
|
490 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
491 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
492 |
+
|
493 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
494 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
495 |
+
|
496 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
497 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
498 |
+
|
499 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
500 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
501 |
+
|
502 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
503 |
+
|
504 |
+
|
505 |
+
#side output
|
506 |
+
d1 = self.side1(hx1d)
|
507 |
+
|
508 |
+
d2 = self.side2(hx2d)
|
509 |
+
d2 = _upsample_like(d2,d1)
|
510 |
+
|
511 |
+
d3 = self.side3(hx3d)
|
512 |
+
d3 = _upsample_like(d3,d1)
|
513 |
+
|
514 |
+
d4 = self.side4(hx4d)
|
515 |
+
d4 = _upsample_like(d4,d1)
|
516 |
+
|
517 |
+
d5 = self.side5(hx5d)
|
518 |
+
d5 = _upsample_like(d5,d1)
|
519 |
+
|
520 |
+
d6 = self.side6(hx6)
|
521 |
+
d6 = _upsample_like(d6,d1)
|
522 |
+
|
523 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
524 |
+
|
525 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|