mlbench123 commited on
Commit
e3022c9
·
verified ·
1 Parent(s): 85aea1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +150 -51
app.py CHANGED
@@ -171,6 +171,76 @@ def get_birefnet():
171
  logger.info("BiRefNet model loaded successfully")
172
  return birefnet
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  def detect_paper_contour(image: np.ndarray, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
175
  """
176
  Detect paper in the image using contour detection as fallback
@@ -422,6 +492,38 @@ def remove_bg(image: np.ndarray) -> np.ndarray:
422
  logger.error(f"Error in BiRefNet background removal: {e}")
423
  raise
424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425
  def mask_paper_area_in_image(image: np.ndarray, paper_contour: np.ndarray) -> np.ndarray:
426
  """Less aggressive masking to preserve corner objects"""
427
  masked_image = image.copy()
@@ -1000,7 +1102,7 @@ def predict_with_paper(image, paper_size, offset, offset_unit, finger_clearance=
1000
  scale_info
1001
  )
1002
 
1003
- def predict_full_paper(image, paper_size, offset_value_mm = 0.02,offset_unit='mm', enable_finger_cut='Off', selected_outputs):
1004
  finger_flag = "On" if enable_finger_cut == "On" else "Off"
1005
 
1006
  # Always get all outputs from predict_with_paper
@@ -1026,29 +1128,18 @@ if __name__ == "__main__":
1026
  os.makedirs("./outputs", exist_ok=True)
1027
 
1028
  with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
1029
- # Example gallery
1030
  gr.Markdown("""
1031
- # Paper-Based DXF Generator
1032
-
1033
- Upload an image with a single object placed on paper (A4, A3, or US Letter).
1034
- The paper serves as a size reference for accurate DXF generation.
1035
- """)
1036
- with gr.Row():
1037
- gr.Markdown("""
1038
- **Instructions:**
1039
- 1. Place a single object on paper
1040
- 2. Select the correct paper size
1041
- 3. Configure options as needed
1042
- 4. Click Submit to generate DXF
1043
- """)
1044
- gr.Markdown("""
1045
- ### Tips for Best Results:
1046
- - Ensure good lighting and clear paper edges
1047
- - Place object completely at the center of the paper
1048
- - Avoid shadows that might interfere with detection
1049
- - Use high contrast between object and paper
1050
- """)
1051
 
 
 
 
 
 
 
 
 
 
1052
 
1053
  with gr.Row():
1054
  with gr.Column():
@@ -1065,31 +1156,31 @@ if __name__ == "__main__":
1065
  info="Select the paper size used in your image"
1066
  )
1067
 
1068
- # with gr.Group():
1069
- # gr.Markdown("### Contour Offset")
1070
- # with gr.Row():
1071
- # offset_value_mm = gr.Number(
1072
- # value=0.02,
1073
- # label="Offset",
1074
- # info="Expand contours outward by this amount",
1075
- # precision=3,
1076
- # minimum=0,
1077
- # maximum=50
1078
- # )
1079
- # offset_unit = gr.Dropdown(
1080
- # choices=["mm", "inches"],
1081
- # value="mm",
1082
- # label="Unit"
1083
- # )
1084
-
1085
- # with gr.Group():
1086
- # gr.Markdown("### Finger Cuts")
1087
- # enable_finger_cut = gr.Radio(
1088
- # choices=["On", "Off"],
1089
- # value="Off",
1090
- # label="Enable Finger Cuts",
1091
- # info="Add circular cuts for easier handling"
1092
- # )
1093
 
1094
  output_options = gr.CheckboxGroup(
1095
  choices=["Annotated Image", "Outlines", "Mask"],
@@ -1131,14 +1222,22 @@ if __name__ == "__main__":
1131
  inputs=[
1132
  input_image,
1133
  paper_size,
1134
- 0.02,
1135
- 'mm',
1136
- 'Off',
1137
  output_options
1138
  ],
1139
  outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
1140
  )
1141
 
1142
-
 
 
 
 
 
 
 
 
1143
 
1144
  demo.launch(share=True)
 
171
  logger.info("BiRefNet model loaded successfully")
172
  return birefnet
173
 
174
+ # def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]:
175
+ # """
176
+ # Detect paper in the image using contour detection as fallback
177
+ # Returns the paper contour and estimated scaling factor
178
+ # """
179
+ # logger.info("Using contour-based paper detection")
180
+
181
+ # # Convert to grayscale
182
+ # gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
183
+
184
+ # # Apply bilateral filter to reduce noise while preserving edges
185
+ # filtered = cv2.bilateralFilter(gray, 9, 75, 75)
186
+
187
+ # # Apply adaptive threshold
188
+ # thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
189
+ # cv2.THRESH_BINARY, 11, 2)
190
+
191
+ # # Edge detection with multiple thresholds
192
+ # edges1 = cv2.Canny(filtered, 50, 150)
193
+ # edges2 = cv2.Canny(filtered, 30, 100)
194
+ # edges = cv2.bitwise_or(edges1, edges2)
195
+
196
+ # # Morphological operations to connect broken edges
197
+ # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
198
+ # edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
199
+
200
+ # # Find contours
201
+ # contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
202
+
203
+ # # Filter contours by area and aspect ratio to find paper-like rectangles
204
+ # paper_contours = []
205
+ # image_area = image.shape[0] * image.shape[1]
206
+ # min_area = image_area * 0.20 # At least 15% of image
207
+ # max_area = image_area * 0.85 # At most 95% of image
208
+
209
+ # for contour in contours:
210
+ # area = cv2.contourArea(contour)
211
+ # if min_area < area < max_area:
212
+ # # Approximate contour to polygon
213
+ # epsilon = 0.015 * cv2.arcLength(contour, True)
214
+ # approx = cv2.approxPolyDP(contour, epsilon, True)
215
+
216
+ # # Check if it's roughly rectangular (4 corners) or close to it
217
+ # if len(approx) >= 4:
218
+ # # Calculate bounding rectangle
219
+ # rect = cv2.boundingRect(approx)
220
+ # w, h = rect[2], rect[3]
221
+ # aspect_ratio = w / h if h > 0 else 0
222
+
223
+ # # Check if aspect ratio matches common paper ratios
224
+ # # A4: 1.414, A3: 1.414, US Letter: 1.294
225
+ # if 1.3 < aspect_ratio < 1.5: # More lenient tolerance
226
+ # # Check if contour area is close to bounding rect area (rectangularity)
227
+ # rect_area = w * h
228
+ # if rect_area > 0:
229
+ # extent = area / rect_area
230
+ # if extent > 0.85: # At least 70% rectangular
231
+ # paper_contours.append((contour, area, aspect_ratio, extent))
232
+
233
+ # if not paper_contours:
234
+ # logger.error("No paper-like contours found")
235
+ # raise ReferenceBoxNotDetectedError("Could not detect paper in the image using contour detection")
236
+
237
+ # # Select the best paper contour based on area and rectangularity
238
+ # paper_contours.sort(key=lambda x: (x[1] * x[3]), reverse=True) # Sort by area * extent
239
+ # best_contour = paper_contours[0][0]
240
+
241
+ # logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}")
242
+
243
+ # return best_contour, 0.0 # Return 0.0 as placeholder scaling factor
244
  def detect_paper_contour(image: np.ndarray, output_unit: str = "mm") -> Tuple[np.ndarray, float]:
245
  """
246
  Detect paper in the image using contour detection as fallback
 
492
  logger.error(f"Error in BiRefNet background removal: {e}")
493
  raise
494
 
495
+ # def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.2) -> np.ndarray:
496
+ # """
497
+ # Remove paper area from the mask to focus only on objects
498
+ # """
499
+ # # Create paper mask with slight expansion to ensure complete removal
500
+ # paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8)
501
+
502
+ # # # Expand paper contour slightly
503
+ # # epsilon = expansion_factor * cv2.arcLength(paper_contour, True)
504
+ # # expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True)
505
+
506
+ # # cv2.fillPoly(paper_mask, [expanded_contour], 255)
507
+ # # Create a more aggressive inward shrinking of paper bounds
508
+ # rect = cv2.boundingRect(paper_contour)
509
+ # shrink_pixels = int(min(rect[2], rect[3]) * 0.05) # Shrink by 5% of smaller dimension
510
+
511
+ # # Create shrunken rectangle
512
+ # x, y, w, h = rect
513
+ # shrunken_contour = np.array([
514
+ # [[x + shrink_pixels, y + shrink_pixels]],
515
+ # [[x + w - shrink_pixels, y + shrink_pixels]],
516
+ # [[x + w - shrink_pixels, y + h - shrink_pixels]],
517
+ # [[x + shrink_pixels, y + h - shrink_pixels]]
518
+ # ])
519
+
520
+ # cv2.fillPoly(paper_mask, [shrunken_contour], 255)
521
+
522
+ # # Invert paper mask and apply to object mask
523
+ # paper_mask_inv = cv2.bitwise_not(paper_mask)
524
+ # result_mask = cv2.bitwise_and(mask, paper_mask_inv)
525
+
526
+ # return result_mask
527
  def mask_paper_area_in_image(image: np.ndarray, paper_contour: np.ndarray) -> np.ndarray:
528
  """Less aggressive masking to preserve corner objects"""
529
  masked_image = image.copy()
 
1102
  scale_info
1103
  )
1104
 
1105
+ def predict_full_paper(image, paper_size, offset_value_mm,offset_unit, enable_finger_cut, selected_outputs):
1106
  finger_flag = "On" if enable_finger_cut == "On" else "Off"
1107
 
1108
  # Always get all outputs from predict_with_paper
 
1128
  os.makedirs("./outputs", exist_ok=True)
1129
 
1130
  with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo:
 
1131
  gr.Markdown("""
1132
+ # Paper-Based DXF Generator
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133
 
1134
+ Upload an image with a single object placed on paper (A4, A3, or US Letter).
1135
+ The paper serves as a size reference for accurate DXF generation.
1136
+
1137
+ **Instructions:**
1138
+ 1. Place a single object on paper
1139
+ 2. Select the correct paper size
1140
+ 3. Configure options as needed
1141
+ 4. Click Submit to generate DXF
1142
+ """)
1143
 
1144
  with gr.Row():
1145
  with gr.Column():
 
1156
  info="Select the paper size used in your image"
1157
  )
1158
 
1159
+ with gr.Group():
1160
+ gr.Markdown("### Contour Offset")
1161
+ with gr.Row():
1162
+ offset_value_mm = gr.Number(
1163
+ value=0.02,
1164
+ label="Offset",
1165
+ info="Expand contours outward by this amount",
1166
+ precision=3,
1167
+ minimum=0,
1168
+ maximum=50
1169
+ )
1170
+ offset_unit = gr.Dropdown(
1171
+ choices=["mm", "inches"],
1172
+ value="mm",
1173
+ label="Unit"
1174
+ )
1175
+
1176
+ with gr.Group():
1177
+ gr.Markdown("### Finger Cuts")
1178
+ enable_finger_cut = gr.Radio(
1179
+ choices=["On", "Off"],
1180
+ value="Off",
1181
+ label="Enable Finger Cuts",
1182
+ info="Add circular cuts for easier handling"
1183
+ )
1184
 
1185
  output_options = gr.CheckboxGroup(
1186
  choices=["Annotated Image", "Outlines", "Mask"],
 
1222
  inputs=[
1223
  input_image,
1224
  paper_size,
1225
+ offset_value_mm,
1226
+ offset_unit,
1227
+ enable_finger_cut,
1228
  output_options
1229
  ],
1230
  outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info]
1231
  )
1232
 
1233
+ # Example gallery
1234
+ with gr.Row():
1235
+ gr.Markdown("""
1236
+ ### Tips for Best Results:
1237
+ - Ensure good lighting and clear paper edges
1238
+ - Place object completely on the paper
1239
+ - Avoid shadows that might interfere with detection
1240
+ - Use high contrast between object and paper
1241
+ """)
1242
 
1243
  demo.launch(share=True)