import os from pathlib import Path from typing import List, Union, Tuple from PIL import Image import ezdxf.units import numpy as np import torch from torchvision import transforms from ultralytics import YOLOWorld, YOLO from ultralytics.engine.results import Results from ultralytics.utils.plotting import save_one_box from transformers import AutoModelForImageSegmentation import cv2 import ezdxf import gradio as gr import gc from scalingtestupdated import calculate_scaling_factor from scipy.interpolate import splprep, splev from scipy.ndimage import gaussian_filter1d import json import time import signal from shapely.ops import unary_union from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point from u2netp import U2NETP import logging import shutil # Initialize logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Create cache directory for models CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache") os.makedirs(CACHE_DIR, exist_ok=True) # Paper size configurations (in mm) PAPER_SIZES = { "A4": {"width": 210, "height": 297}, "A3": {"width": 297, "height": 420}, "US Letter": {"width": 215.9, "height": 279.4} } # Custom Exception Classes class TimeoutReachedError(Exception): pass class BoundaryOverlapError(Exception): pass class TextOverlapError(Exception): pass class PaperNotDetectedError(Exception): """Raised when the paper cannot be detected in the image""" pass class MultipleObjectsError(Exception): """Raised when multiple objects are detected on the paper""" def __init__(self, message="Multiple objects detected. Please place only a single object on the paper."): super().__init__(message) class NoObjectDetectedError(Exception): """Raised when no object is detected on the paper""" def __init__(self, message="No object detected on the paper. Please ensure an object is placed on the paper."): super().__init__(message) class FingerCutOverlapError(Exception): """Raised when finger cuts overlap with existing geometry""" def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."): super().__init__(message) class ReferenceBoxNotDetectedError(Exception): """Raised when reference box/paper cannot be detected""" def __init__(self, message="Reference box not detected"): super().__init__(message) # Global model variables for lazy loading paper_detector_global = None u2net_global = None birefnet = None # Model paths paper_model_path = os.path.join(CACHE_DIR, "paper_detector.pt") # You'll need to train/provide this u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth") # Device configuration device = "cpu" torch.set_float32_matmul_precision(["high", "highest"][0]) def ensure_model_files(): """Ensure model files are available in cache directory""" if not os.path.exists(paper_model_path): if os.path.exists("paper_detector.pt"): shutil.copy("paper_detector.pt", paper_model_path) else: logger.warning("paper_detector.pt model file not found - using fallback detection") if not os.path.exists(u2net_model_path): if os.path.exists("u2netp.pth"): shutil.copy("u2netp.pth", u2net_model_path) else: raise FileNotFoundError("u2netp.pth model file not found") ensure_model_files() # Lazy loading functions def get_paper_detector(): """Lazy load paper detector model""" global paper_detector_global if paper_detector_global is None: logger.info("Loading paper detector model...") if os.path.exists(paper_model_path): try: paper_detector_global = YOLO(paper_model_path) logger.info("Paper detector loaded successfully") except Exception as e: logger.error(f"Failed to load paper detector: {e}") paper_detector_global = None else: # Fallback to generic object detection for paper-like rectangles logger.warning("Paper model file not found, using fallback detection") paper_detector_global = None return paper_detector_global def get_u2net(): """Lazy load U2NETP model""" global u2net_global if u2net_global is None: logger.info("Loading U2NETP model...") u2net_global = U2NETP(3, 1) u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu")) u2net_global.to(device) u2net_global.eval() logger.info("U2NETP model loaded successfully") return u2net_global def load_birefnet_model(): """Load BiRefNet model from HuggingFace""" return AutoModelForImageSegmentation.from_pretrained( 'ZhengPeng7/BiRefNet', trust_remote_code=True ) def get_birefnet(): """Lazy load BiRefNet model""" global birefnet if birefnet is None: logger.info("Loading BiRefNet model...") birefnet = load_birefnet_model() birefnet.to(device) birefnet.eval() logger.info("BiRefNet model loaded successfully") return birefnet def detect_paper_contour(image: np.ndarray) -> Tuple[np.ndarray, float]: """ Detect paper in the image using contour detection as fallback Returns the paper contour and estimated scaling factor """ logger.info("Using contour-based paper detection") # Convert to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image # Apply bilateral filter to reduce noise while preserving edges filtered = cv2.bilateralFilter(gray, 9, 75, 75) # Apply adaptive threshold thresh = cv2.adaptiveThreshold(filtered, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # Edge detection with multiple thresholds edges1 = cv2.Canny(filtered, 50, 150) edges2 = cv2.Canny(filtered, 30, 100) edges = cv2.bitwise_or(edges1, edges2) # Morphological operations to connect broken edges kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel) # Find contours contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Filter contours by area and aspect ratio to find paper-like rectangles paper_contours = [] image_area = image.shape[0] * image.shape[1] min_area = image_area * 0.15 # At least 15% of image max_area = image_area * 0.95 # At most 95% of image for contour in contours: area = cv2.contourArea(contour) if min_area < area < max_area: # Approximate contour to polygon epsilon = 0.02 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) # Check if it's roughly rectangular (4 corners) or close to it if len(approx) >= 4: # Calculate bounding rectangle rect = cv2.boundingRect(approx) w, h = rect[2], rect[3] aspect_ratio = w / h if h > 0 else 0 # Check if aspect ratio matches common paper ratios # A4: 1.414, A3: 1.414, US Letter: 1.294 if 0.6 < aspect_ratio < 2.0: # More lenient tolerance # Check if contour area is close to bounding rect area (rectangularity) rect_area = w * h if rect_area > 0: extent = area / rect_area if extent > 0.7: # At least 70% rectangular paper_contours.append((contour, area, aspect_ratio, extent)) if not paper_contours: logger.error("No paper-like contours found") raise ReferenceBoxNotDetectedError("Could not detect paper in the image using contour detection") # Select the best paper contour based on area and rectangularity paper_contours.sort(key=lambda x: (x[1] * x[3]), reverse=True) # Sort by area * extent best_contour = paper_contours[0][0] logger.info(f"Paper detected using contours: area={paper_contours[0][1]}, aspect_ratio={paper_contours[0][2]:.2f}") return best_contour, 0.0 # Return 0.0 as placeholder scaling factor def detect_paper_bounds(image: np.ndarray, paper_size: str) -> Tuple[np.ndarray, float]: """ Detect paper bounds in the image and calculate scaling factor """ try: paper_detector = get_paper_detector() if paper_detector is not None: # Use trained model if available # FIXED: Add verbose=False to suppress prints, and use proper confidence threshold results = paper_detector.predict(image, conf=0.8, verbose=False) # Lower confidence threshold if not results or len(results) == 0: logger.warning("No results from paper detector") return detect_paper_contour(image) # Check if boxes exist and are not empty if not hasattr(results[0], 'boxes') or results[0].boxes is None or len(results[0].boxes) == 0: logger.warning("No boxes detected by model, using fallback contour detection") return detect_paper_contour(image) # Get the largest detected paper boxes = results[0].boxes.xyxy.cpu().numpy() # Convert to numpy if len(boxes) == 0: logger.warning("Empty boxes detected, using fallback") return detect_paper_contour(image) largest_box = None max_area = 0 for box in boxes: x_min, y_min, x_max, y_max = box area = (x_max - x_min) * (y_max - y_min) if area > max_area: max_area = area largest_box = box if largest_box is None: logger.warning("No valid paper box found, using fallback") return detect_paper_contour(image) # Convert box to contour-like format x_min, y_min, x_max, y_max = map(int, largest_box) paper_contour = np.array([ [[x_min, y_min]], [[x_max, y_min]], [[x_max, y_max]], [[x_min, y_max]] ]) logger.info(f"Paper detected by model: {x_min},{y_min} to {x_max},{y_max}") else: # Use fallback contour detection logger.info("Using fallback contour detection for paper") paper_contour, _ = detect_paper_contour(image) # Calculate scaling factor based on paper size scaling_factor = calculate_paper_scaling_factor(paper_contour, paper_size) return paper_contour, scaling_factor except Exception as e: logger.error(f"Error in paper detection: {e}") # Instead of raising PaperNotDetectedError, raise ReferenceBoxNotDetectedError raise ReferenceBoxNotDetectedError(f"Failed to detect paper: {str(e)}") def calculate_paper_scaling_factor(paper_contour: np.ndarray, paper_size: str) -> float: """ Calculate scaling factor based on detected paper dimensions """ # Get paper dimensions paper_dims = PAPER_SIZES[paper_size] expected_width_mm = paper_dims["width"] expected_height_mm = paper_dims["height"] # Calculate bounding rectangle of paper contour rect = cv2.boundingRect(paper_contour) detected_width_px = rect[2] detected_height_px = rect[3] # Calculate scaling factors for both dimensions scale_x = expected_width_mm / detected_width_px scale_y = expected_height_mm / detected_height_px # Use average of both scales scaling_factor = (scale_x + scale_y) / 2 logger.info(f"Paper detection: {detected_width_px}x{detected_height_px} px -> {expected_width_mm}x{expected_height_mm} mm") logger.info(f"Calculated scaling factor: {scaling_factor:.4f} mm/px") return scaling_factor def validate_single_object(mask: np.ndarray, paper_contour: np.ndarray) -> None: """ Validate that only a single object is present on the paper """ # Create a mask for the paper area paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8) cv2.fillPoly(paper_mask, [paper_contour], 255) # Apply paper mask to object mask masked_objects = cv2.bitwise_and(mask, paper_mask) # Find contours of objects within paper bounds contours, _ = cv2.findContours(masked_objects, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # Filter out very small contours (noise) and paper-sized contours image_area = mask.shape[0] * mask.shape[1] min_area = 1000 # Minimum area threshold max_area = image_area * 0.5 # Maximum 50% of image area (to exclude paper detection) significant_contours = [c for c in contours if min_area < cv2.contourArea(c) < max_area] if len(significant_contours) == 0: raise NoObjectDetectedError() elif len(significant_contours) > 1: raise MultipleObjectsError() logger.info(f"Single object validated: {len(significant_contours)} significant contour(s) found") def remove_bg_u2netp(image: np.ndarray) -> np.ndarray: """Remove background using U2NETP model""" try: u2net_model = get_u2net() image_pil = Image.fromarray(image) transform_u2netp = transforms.Compose([ transforms.Resize((320, 320)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device) with torch.no_grad(): outputs = u2net_model(input_tensor) pred = outputs[0] pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8) pred_np = pred.squeeze().cpu().numpy() pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height)) pred_np = (pred_np * 255).astype(np.uint8) return pred_np except Exception as e: logger.error(f"Error in U2NETP background removal: {e}") raise def remove_bg(image: np.ndarray) -> np.ndarray: """Remove background using BiRefNet model for main objects""" try: birefnet_model = get_birefnet() transform_image = transforms.Compose([ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) image_pil = Image.fromarray(image) input_images = transform_image(image_pil).unsqueeze(0).to(device) with torch.no_grad(): preds = birefnet_model(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) scale_ratio = 1024 / max(image_pil.size) scaled_size = (int(image_pil.size[0] * scale_ratio), int(image_pil.size[1] * scale_ratio)) return np.array(pred_pil.resize(scaled_size)) except Exception as e: logger.error(f"Error in BiRefNet background removal: {e}") raise def exclude_paper_area(mask: np.ndarray, paper_contour: np.ndarray, expansion_factor: float = 1.2) -> np.ndarray: """ Remove paper area from the mask to focus only on objects """ # Create paper mask with slight expansion to ensure complete removal paper_mask = np.zeros(mask.shape[:2], dtype=np.uint8) # Expand paper contour slightly epsilon = expansion_factor * cv2.arcLength(paper_contour, True) expanded_contour = cv2.approxPolyDP(paper_contour, epsilon, True) cv2.fillPoly(paper_mask, [expanded_contour], 255) # Invert paper mask and apply to object mask paper_mask_inv = cv2.bitwise_not(paper_mask) result_mask = cv2.bitwise_and(mask, paper_mask_inv) return result_mask def resample_contour(contour, edge_radius_px: int = 0): """Resample contour with radius-aware smoothing and periodic handling.""" logger.info(f"Starting resample_contour with contour of shape {contour.shape}") num_points = 1500 sigma = max(2, int(edge_radius_px) // 4) if len(contour) < 4: error_msg = f"Contour must have at least 4 points, but has {len(contour)} points." logger.error(error_msg) raise ValueError(error_msg) try: contour = contour[:, 0, :] logger.debug(f"Reshaped contour to shape {contour.shape}") if not np.array_equal(contour[0], contour[-1]): contour = np.vstack([contour, contour[0]]) tck, u = splprep(contour.T, u=None, s=0, per=True) u_new = np.linspace(u.min(), u.max(), num_points) x_new, y_new = splev(u_new, tck, der=0) if sigma > 0: x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap') y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap') x_new[-1] = x_new[0] y_new[-1] = y_new[0] result = np.array([x_new, y_new]).T logger.info(f"Completed resample_contour with result shape {result.shape}") return result except Exception as e: logger.error(f"Error in resample_contour: {e}") raise def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False): """Save contours as DXF splines with optional finger cuts""" doc = ezdxf.new(units=ezdxf.units.MM) doc.header["$INSUNITS"] = ezdxf.units.MM msp = doc.modelspace() final_polygons_inch = [] finger_centers = [] original_polygons = [] # Scale correction factor scale_correction = 1.079 for contour in inflated_contours: try: resampled_contour = resample_contour(contour) points_inch = [(x * scaling_factor, (height - y) * scaling_factor) for x, y in resampled_contour] if len(points_inch) < 3: continue tool_polygon = build_tool_polygon(points_inch) original_polygons.append(tool_polygon) if finger_clearance: try: tool_polygon, center = place_finger_cut_adjusted( tool_polygon, points_inch, finger_centers, final_polygons_inch ) except FingerCutOverlapError: tool_polygon = original_polygons[-1] exterior_coords = polygon_to_exterior_coords(tool_polygon) if len(exterior_coords) < 3: continue # Apply scale correction corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords] msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"}) final_polygons_inch.append(tool_polygon) except ValueError as e: logger.warning(f"Skipping contour: {e}") dxf_filepath = os.path.join("./outputs", "out.dxf") doc.saveas(dxf_filepath) return dxf_filepath, final_polygons_inch, original_polygons def build_tool_polygon(points_inch): """Build a polygon from inch-converted points""" return Polygon(points_inch) def polygon_to_exterior_coords(poly): """Extract exterior coordinates from polygon""" logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}") try: if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon": logger.debug(f"Performing unary_union on {poly.geom_type}") unified = unary_union(poly) if unified.is_empty: logger.warning("unary_union produced an empty geometry; returning empty list") return [] if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon": largest = None max_area = 0.0 for g in getattr(unified, "geoms", []): if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"): max_area = g.area largest = g if largest is None: logger.warning("No valid Polygon found in unified geometry; returning empty list") return [] poly = largest else: poly = unified if not hasattr(poly, "exterior") or poly.exterior is None: logger.warning("Input geometry has no exterior ring; returning empty list") return [] raw_coords = list(poly.exterior.coords) total = len(raw_coords) logger.info(f"Extracted {total} raw exterior coordinates") if total == 0: return [] # Subsample coordinates to at most 100 points max_pts = 100 if total > max_pts: step = total // max_pts sampled = [raw_coords[i] for i in range(0, total, step)] if sampled[-1] != raw_coords[-1]: sampled.append(raw_coords[-1]) logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points") return sampled else: return raw_coords except Exception as e: logger.error(f"Error in polygon_to_exterior_coords: {e}") return [] def place_finger_cut_adjusted( tool_polygon: Polygon, points_inch: list, existing_centers: list, all_polygons: list, circle_diameter: float = 25.4, min_gap: float = 0.5, max_attempts: int = 100 ) -> Tuple[Polygon, tuple]: """Place finger cuts with collision avoidance""" logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points") def fallback_solution(): logger.warning("Using fallback approach for finger cut placement") fallback_center = points_inch[len(points_inch) // 2] r = circle_diameter / 2.0 fallback_circle = Point(fallback_center).buffer(r, resolution=32) try: union_poly = tool_polygon.union(fallback_circle) except Exception as e: logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback") union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0)) existing_centers.append(fallback_center) logger.info(f"Fallback finger cut placed at {fallback_center}") return union_poly, fallback_center r = circle_diameter / 2.0 needed_center_dist = circle_diameter + min_gap raw_perimeter = polygon_to_exterior_coords(tool_polygon) if not raw_perimeter: logger.warning("No valid exterior coords found; using fallback immediately") return fallback_solution() if len(raw_perimeter) > 100: step = len(raw_perimeter) // 100 perimeter_coords = raw_perimeter[::step] logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points") else: perimeter_coords = raw_perimeter[:] indices = list(range(len(perimeter_coords))) np.random.shuffle(indices) logger.debug(f"Shuffled perimeter indices for candidate order") start_time = time.time() timeout_secs = 5.0 attempts = 0 try: while attempts < max_attempts: if time.time() - start_time > timeout_secs - 0.1: logger.warning(f"Approaching timeout after {attempts} attempts") return fallback_solution() for idx in indices: if time.time() - start_time > timeout_secs - 0.05: logger.warning("Timeout during candidate-point loop") return fallback_solution() cx, cy = perimeter_coords[idx] for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]: candidate_center = (cx + dx, cy + dy) # Check distance to existing finger centers too_close_finger = any( np.hypot(candidate_center[0] - ex, candidate_center[1] - ey) < needed_center_dist for (ex, ey) in existing_centers ) if too_close_finger: continue # Build candidate circle candidate_circle = Point(candidate_center).buffer(r, resolution=32) # Must overlap ≥30% with this polygon try: inter_area = tool_polygon.intersection(candidate_circle).area except Exception: continue if inter_area < 0.3 * candidate_circle.area: continue # Must not intersect other polygons invalid = False for other_poly in all_polygons: if other_poly.equals(tool_polygon): continue if other_poly.buffer(min_gap).intersects(candidate_circle) or \ other_poly.buffer(min_gap).touches(candidate_circle): invalid = True break if invalid: continue # Union and return try: union_poly = tool_polygon.union(candidate_circle) if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1: continue if union_poly.equals(tool_polygon): continue except Exception: continue existing_centers.append(candidate_center) logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts") return union_poly, candidate_center attempts += 1 if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8: logger.warning(f"Approaching timeout (attempt {attempts})") return fallback_solution() logger.warning(f"No valid spot after {max_attempts} attempts, using fallback") return fallback_solution() except Exception as e: logger.error(f"Error in place_finger_cut_adjusted: {e}") return fallback_solution() def extract_outlines(binary_image: np.ndarray) -> Tuple[np.ndarray, list]: """Extract outlines from binary image""" contours, _ = cv2.findContours( binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE ) outline_image = np.full_like(binary_image, 255) return outline_image, contours def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray: """Round mask edges using contour smoothing""" if radius_mm <= 0 or scaling_factor <= 0: return mask radius_px = max(1, int(radius_mm / scaling_factor)) if np.count_nonzero(mask) < 500: return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3))) contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours = [c for c in contours if cv2.contourArea(c) > 100] smoothed_contours = [] for contour in contours: try: resampled = resample_contour(contour, radius_px) resampled = resampled.astype(np.int32).reshape((-1, 1, 2)) smoothed_contours.append(resampled) except Exception as e: logger.warning(f"Error smoothing contour: {e}") smoothed_contours.append(contour) rounded = np.zeros_like(mask) cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED) return rounded def cleanup_memory(): """Clean up memory after processing""" if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() logger.info("Memory cleanup completed") def cleanup_models(): """Unload models to free memory""" global paper_detector_global, u2net_global, birefnet if paper_detector_global is not None: del paper_detector_global paper_detector_global = None if u2net_global is not None: del u2net_global u2net_global = None if birefnet is not None: del birefnet birefnet = None cleanup_memory() def make_square(img: np.ndarray): """Make the image square by padding""" height, width = img.shape[:2] max_dim = max(height, width) pad_height = (max_dim - height) // 2 pad_width = (max_dim - width) // 2 pad_height_extra = max_dim - height - 2 * pad_height pad_width_extra = max_dim - width - 2 * pad_width if len(img.shape) == 3: padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), (0, 0), ), mode="edge", ) else: padded = np.pad( img, ( (pad_height, pad_height + pad_height_extra), (pad_width, pad_width + pad_width_extra), ), mode="edge", ) return padded def predict_with_paper(image, paper_size, offset,offset_unit, finger_clearance=False): """Main prediction function using paper as reference""" logger.info(f"Starting prediction with image shape: {image.shape}") logger.info(f"Paper size: {paper_size}") if offset_unit == "inches": offset_mm = offset * 25.4 # Convert to mm for internal calculations else: offset_mm = offset edge_radius = None if edge_radius is None or edge_radius == 0: edge_radius = 0.0001 if offset < 0: raise gr.Error("Offset Value Can't be negative") try: # Detect paper bounds and calculate scaling factor logger.info("Starting paper detection...") paper_contour, scaling_factor = detect_paper_bounds(image, paper_size) logger.info(f"Paper detected successfully with scaling factor: {scaling_factor:.4f} mm/px") except ReferenceBoxNotDetectedError as e: logger.error(f"Paper detection failed: {e}") return ( None, None, None, None, f"Error: {str(e)}" ) except Exception as e: logger.error(f"Unexpected error in paper detection: {e}") raise gr.Error(f"Error processing image: {str(e)}") try: # Remove background from main objects orig_size = image.shape[:2] objects_mask = remove_bg(image) processed_size = objects_mask.shape[:2] # Resize mask to match original image objects_mask = cv2.resize(objects_mask, (image.shape[1], image.shape[0])) # Remove paper area from mask to focus only on objects objects_mask = exclude_paper_area(objects_mask, paper_contour) # Validate single object validate_single_object(objects_mask, paper_contour) except (MultipleObjectsError, NoObjectDetectedError) as e: return ( None, None, None, None, f"Error: {str(e)}" ) except Exception as e: raise gr.Error(f"Error in object detection: {str(e)}") # Apply edge rounding if specified rounded_mask = objects_mask.copy() # Apply dilation for offset if offset_mm > 0: offset_pixels = (float(offset_mm) / scaling_factor) # Remove the *2 +1 which was causing excessive dilation kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8) dilated_mask = cv2.dilate(rounded_mask, kernel) else: dilated_mask = rounded_mask.copy() # Save original dilated mask for output Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg") dilated_mask_orig = dilated_mask.copy() # Extract contours outlines, contours = extract_outlines(dilated_mask) try: # Generate DXF dxf, finger_polygons, original_polygons = save_dxf_spline( contours, scaling_factor, processed_size[0], finger_clearance=(finger_clearance == "On") ) except FingerCutOverlapError as e: raise gr.Error(str(e)) # Create annotated image shrunked_img_contours = image.copy() if finger_clearance == "On": outlines = np.full_like(dilated_mask, 255) for poly in finger_polygons: try: coords = np.array([ (int(x / scaling_factor), int(processed_size[0] - y / scaling_factor)) for x, y in poly.exterior.coords ], np.int32).reshape((-1, 1, 2)) cv2.drawContours(shrunked_img_contours, [coords], -1, (0, 255, 0), thickness=2) cv2.drawContours(outlines, [coords], -1, 0, thickness=2) except Exception as e: logger.warning(f"Failed to draw finger cut: {e}") continue else: outlines = np.full_like(dilated_mask, 255) cv2.drawContours(shrunked_img_contours, contours, -1, (0, 255, 0), thickness=2) cv2.drawContours(outlines, contours, -1, 0, thickness=2) # Draw paper bounds on annotated image cv2.drawContours(shrunked_img_contours, [paper_contour], -1, (255, 0, 0), thickness=3) # Add paper size text paper_text = f"Paper: {paper_size}" cv2.putText(shrunked_img_contours, paper_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) cleanup_models() return ( shrunked_img_contours, outlines, dxf, dilated_mask_orig, f"Scale: {scaling_factor:.4f} mm/px | Paper: {paper_size}" ) def predict_full_paper(image, paper_size, offset_value_mm,offset_unit, enable_finger_cut, selected_outputs): finger_flag = "On" if enable_finger_cut == "On" else "Off" # Always get all outputs from predict_with_paper ann, outlines, dxf_path, mask, scale_info = predict_with_paper( image, paper_size, offset=offset_value_mm, offset_unit= offset_unit, finger_clearance=finger_flag, ) # Return based on selected outputs return ( dxf_path, # Always return DXF ann if "Annotated Image" in selected_outputs else None, outlines if "Outlines" in selected_outputs else None, mask if "Mask" in selected_outputs else None, scale_info # Always return scaling info ) # Gradio Interface if __name__ == "__main__": os.makedirs("./outputs", exist_ok=True) with gr.Blocks(title="Paper-Based DXF Generator", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # Paper-Based DXF Generator Upload an image with a single object placed on paper (A4, A3, or US Letter). The paper serves as a size reference for accurate DXF generation. **Instructions:** 1. Place a single object on paper 2. Select the correct paper size 3. Configure options as needed 4. Click Submit to generate DXF """) with gr.Row(): with gr.Column(): input_image = gr.Image( label="Input Image (Object on Paper)", type="numpy", height=400 ) paper_size = gr.Radio( choices=["A4", "A3", "US Letter"], value="A4", label="Paper Size", info="Select the paper size used in your image" ) with gr.Group(): gr.Markdown("### Contour Offset") with gr.Row(): offset_value_mm = gr.Number( value=0.02, label="Offset", info="Expand contours outward by this amount", precision=3, minimum=0, maximum=50 ) offset_unit = gr.Dropdown( choices=["mm", "inches"], value="mm", label="Unit" ) with gr.Group(): gr.Markdown("### Finger Cuts") enable_finger_cut = gr.Radio( choices=["On", "Off"], value="Off", label="Enable Finger Cuts", info="Add circular cuts for easier handling" ) output_options = gr.CheckboxGroup( choices=["Annotated Image", "Outlines", "Mask"], value=[], label="Additional Outputs", info="DXF is always included" ) submit_btn = gr.Button("Generate DXF", variant="primary", size="lg") with gr.Column(): with gr.Group(): gr.Markdown("### Generated Files") dxf_file = gr.File(label="DXF File", file_types=[".dxf"]) scale_info = gr.Textbox(label="Scaling Information", interactive=False) with gr.Group(): gr.Markdown("### Preview Images") output_image = gr.Image(label="Annotated Image", visible=False) outlines_image = gr.Image(label="Outlines", visible=False) mask_image = gr.Image(label="Mask", visible=False) def update_outputs_visibility(selected): return [ gr.update(visible="Annotated Image" in selected), gr.update(visible="Outlines" in selected), gr.update(visible="Mask" in selected) ] output_options.change( fn=update_outputs_visibility, inputs=output_options, outputs=[output_image, outlines_image, mask_image] ) submit_btn.click( fn=predict_full_paper, inputs=[ input_image, paper_size, offset_value_mm, offset_unit, enable_finger_cut, output_options ], outputs=[dxf_file, output_image, outlines_image, mask_image, scale_info] ) # Example gallery with gr.Row(): gr.Markdown(""" ### Tips for Best Results: - Ensure good lighting and clear paper edges - Place object completely on the paper - Avoid shadows that might interfere with detection - Use high contrast between object and paper """) demo.launch(share=True)