File size: 36,694 Bytes
4323222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
5a24f0e
 
 
4aff382
 
 
 
5a24f0e
 
 
 
4aff382
 
5a24f0e
 
 
 
 
 
4aff382
 
 
 
5a24f0e
 
 
 
4aff382
 
5a24f0e
 
 
 
 
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
 
4aff382
 
 
 
4323222
4aff382
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
4323222
4aff382
 
4323222
 
4aff382
4323222
 
4aff382
4323222
 
4aff382
4323222
 
4aff382
4323222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aff382
4323222
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
 
 
 
 
f334e46
4323222
 
4aff382
 
 
4323222
 
 
 
4aff382
4323222
 
4aff382
4323222
 
 
 
 
 
 
 
4aff382
4323222
 
 
 
 
 
 
4aff382
 
 
4323222
4aff382
 
4323222
4aff382
 
 
 
4323222
4aff382
 
 
4323222
4aff382
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
4323222
4aff382
 
 
 
 
 
4323222
 
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
 
 
4323222
 
4aff382
4323222
 
 
4aff382
4323222
 
 
 
 
4aff382
 
4323222
 
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
4323222
 
 
 
 
 
 
 
4aff382
 
 
 
4323222
 
4aff382
4323222
4aff382
4323222
 
 
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
 
 
 
 
 
4aff382
 
 
 
 
 
 
 
 
 
4323222
 
4aff382
 
 
 
4323222
 
4aff382
4323222
4aff382
4323222
 
 
 
4aff382
4323222
4aff382
 
 
 
4323222
4aff382
4323222
 
 
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
 
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4323222
5a24f0e
 
 
4aff382
 
 
 
 
 
 
5a24f0e
 
 
 
4aff382
5a24f0e
 
 
4323222
 
5a24f0e
 
 
 
 
 
 
8164f36
5a24f0e
4aff382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a24f0e
 
 
 
 
4aff382
5a24f0e
 
 
 
4323222
5a24f0e
 
 
 
 
 
4aff382
5a24f0e
 
4aff382
5a24f0e
 
4aff382
 
5a24f0e
 
 
 
 
 
 
4aff382
 
 
5a24f0e
 
4aff382
 
 
 
 
 
 
 
 
 
4323222
5a24f0e
4aff382
 
5a24f0e
 
4323222
4aff382
5a24f0e
 
4aff382
 
 
 
5a24f0e
4aff382
5a24f0e
4323222
5a24f0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
import os
from pathlib import Path
from typing import List, Union
from PIL import Image
import ezdxf.units
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
import gc
from scalingtestupdated import calculate_scaling_factor
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
import json
import time
import signal
from shapely.ops import unary_union
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
from u2netp import U2NETP  # Add U2NETP import
import logging
import shutil

# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Create cache directory for models
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)

# Custom Exception Classes
class TimeoutReachedError(Exception):
    pass

class BoundaryOverlapError(Exception):
    pass

class TextOverlapError(Exception):
    pass

class ReferenceBoxNotDetectedError(Exception):
    """Raised when the Reference coin cannot be detected in the image"""
    pass

class FingerCutOverlapError(Exception):
    """Raised when finger cuts overlap with existing geometry"""
    def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
        super().__init__(message)

# Global model initialization
print("Loading models...")
start_time = time.time()

# Load YOLO reference model
reference_model_path = os.path.join("", "best1.pt")
if not os.path.exists(reference_model_path):
    shutil.copy("best1.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)

# Load U2NETP model
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
    shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))

# Load BiRefNet model
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)

device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])

# Move models to device
u2net_global.to(device)
u2net_global.eval()
birefnet.to(device)
birefnet.eval()

# Define transforms
transform_image = transforms.Compose([
    transforms.Resize((1024, 1024)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])

# Language translations dictionary remains unchanged
TRANSLATIONS = {
    "english": {
        "input_image": "Input Image",
        "offset_value": "Offset value",  
        "offset_unit": "Offset unit (mm/in)",
        "enable_finger": "Enable Finger Clearance",
        "edge_radius": "Edge rounding radius (mm)",
        "output_image": "Output Image",
        "outlines": "Outlines of Objects",
        "dxf_file": "DXF file",
        "mask": "Mask",
        "enable_radius": "Enable Edge Rounding",
        "radius_disabled": "Rounding Disabled",
        "scaling_factor": "Scaling Factor(mm)",
        "scaling_placeholder": "Every pixel is equal to mentioned number in millimeters",
        "language_selector": "Select Language",
    },
    "dutch": {
        "input_image": "Invoer Afbeelding",
        "offset_value": "Offset waarde",
        "offset_unit": "Offset unit (mm/inch)",
        "enable_finger": "Finger Clearance inschakelen",
        "edge_radius": "Ronding radius rand (mm)",
        "output_image": "Uitvoer Afbeelding",
        "outlines": "Contouren van Objecten",
        "dxf_file": "DXF bestand",
        "mask": "Masker",
        "enable_radius": "Ronding inschakelen",
        "radius_disabled": "Ronding uitgeschakeld",
        "scaling_factor": "Schalingsfactor(mm)",
        "scaling_placeholder": "Elke pixel is gelijk aan genoemd aantal in millimeters",
        "language_selector": "Selecteer Taal",
    }
}

def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
    """Remove background using U2NETP model specifically for reference objects"""
    try:
        image_pil = Image.fromarray(image)
        transform_u2netp = transforms.Compose([
            transforms.Resize((320, 320)),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])
        
        input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
        
        with torch.no_grad():
            outputs = u2net_global(input_tensor)
        
        pred = outputs[0]
        pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
        pred_np = pred.squeeze().cpu().numpy()
        pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
        pred_np = (pred_np * 255).astype(np.uint8)
        
        return pred_np
    except Exception as e:
        logger.error(f"Error in U2NETP background removal: {e}")
        raise

def remove_bg(image: np.ndarray) -> np.ndarray:
    """Remove background using BiRefNet model for main objects"""
    try:
        image = Image.fromarray(image)
        input_images = transform_image(image).unsqueeze(0).to(device)

        with torch.no_grad():
            preds = birefnet(input_images)[-1].sigmoid().cpu()
        pred = preds[0].squeeze()

        pred_pil: Image = transforms.ToPILImage()(pred)
        
        scale_ratio = 1024 / max(image.size)
        scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
        
        return np.array(pred_pil.resize(scaled_size))
    except Exception as e:
        logger.error(f"Error in BiRefNet background removal: {e}")
        raise

def resize_img(img: np.ndarray, resize_dim):
    return np.array(Image.fromarray(img).resize(resize_dim))

def make_square(img: np.ndarray):
    """Make the image square by padding"""
    height, width = img.shape[:2]
    max_dim = max(height, width)
    
    pad_height = (max_dim - height) // 2
    pad_width = (max_dim - width) // 2
    
    pad_height_extra = max_dim - height - 2 * pad_height
    pad_width_extra = max_dim - width - 2 * pad_width
    
    if len(img.shape) == 3:  # Color image
        padded = np.pad(
            img,
            (
                (pad_height, pad_height + pad_height_extra),
                (pad_width, pad_width + pad_width_extra),
                (0, 0),
            ),
            mode="edge",
        )
    else:  # Grayscale image
        padded = np.pad(
            img,
            (
                (pad_height, pad_height + pad_height_extra),
                (pad_width, pad_width + pad_width_extra),
            ),
            mode="edge",
        )
    
    return padded


def detect_reference_square(img) -> tuple:
    """Detect reference square in the image and ignore other coins"""
    try:
        res = reference_detector_global.predict(img, conf=0.75)
        if not res or len(res) == 0 or len(res[0].boxes) == 0:
            raise ReferenceBoxNotDetectedError("Unable to detect the reference coin in the image.")
        
        # Get all detected boxes
        boxes = res[0].cpu().boxes.xyxy
        
        # Find the largest box (most likely the reference coin)
        largest_box = None
        max_area = 0
        for box in boxes:
            x_min, y_min, x_max, y_max = box
            area = (x_max - x_min) * (y_max - y_min)
            if area > max_area:
                max_area = area
                largest_box = box
        
        return (
            save_one_box(largest_box.unsqueeze(0), img, save=False),
            largest_box
        )
    except Exception as e:
        if not isinstance(e, ReferenceBoxNotDetectedError):
            logger.error(f"Error in reference square detection: {e}")
            raise ReferenceBoxNotDetectedError("Error detecting reference coin. Please try again with a clearer image.")
        raise


def exclude_scaling_box(
    image: np.ndarray,
    bbox: np.ndarray,
    orig_size: tuple,
    processed_size: tuple,
    expansion_factor: float = 1.2,
) -> np.ndarray:
    x_min, y_min, x_max, y_max = map(int, bbox)
    scale_x = processed_size[1] / orig_size[1]
    scale_y = processed_size[0] / orig_size[0]
    
    x_min = int(x_min * scale_x)
    x_max = int(x_max * scale_x)
    y_min = int(y_min * scale_y)
    y_max = int(y_max * scale_y)
    
    box_width = x_max - x_min
    box_height = y_max - y_min
    
    expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
    expanded_x_max = min(
        image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
    )
    expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
    expanded_y_max = min(
        image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
    )
    
    image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
    return image





def resample_contour(contour, edge_radius_px: int = 0):
    """Resample contour with radius-aware smoothing and periodic handling."""
    logger.info(f"Starting resample_contour with contour of shape {contour.shape}")

    num_points = 1500
    sigma = max(2, int(edge_radius_px) // 4)  # Adjust sigma based on radius

    if len(contour) < 4:  # Need at least 4 points for spline with periodic condition
        error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
        logger.error(error_msg)
        raise ValueError(error_msg)

    try:
        contour = contour[:, 0, :]
        logger.debug(f"Reshaped contour to shape {contour.shape}")

        # Ensure contour is closed by making start and end points the same
        if not np.array_equal(contour[0], contour[-1]):
            contour = np.vstack([contour, contour[0]])

        # Create periodic spline representation
        tck, u = splprep(contour.T, u=None, s=0, per=True)
        
        # Evaluate spline at evenly spaced points
        u_new = np.linspace(u.min(), u.max(), num_points)
        x_new, y_new = splev(u_new, tck, der=0)
        
        # Apply Gaussian smoothing with wrap-around
        if sigma > 0:
            x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
            y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
            
            # Re-close the contour after smoothing
            x_new[-1] = x_new[0]
            y_new[-1] = y_new[0]

        result = np.array([x_new, y_new]).T
        logger.info(f"Completed resample_contour with result shape {result.shape}")
        return result

    except Exception as e:
        logger.error(f"Error in resample_contour: {e}")
        raise






# def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
#     doc = ezdxf.new(units=ezdxf.units.MM)
#     doc.header["$INSUNITS"] = ezdxf.units.MM
#     msp = doc.modelspace()
#     final_polygons_inch = []
#     finger_centers = []
#     original_polygons = []

#     for contour in inflated_contours:
#         try:
#             # Removed the second parameter since it was causing the error
#             resampled_contour = resample_contour(contour)  
            
#             points_inch = [(x * scaling_factor, (height - y) * scaling_factor) 
#                           for x, y in resampled_contour]
            
#             if len(points_inch) < 3:
#                 continue

#             tool_polygon = build_tool_polygon(points_inch)
#             original_polygons.append(tool_polygon)
            
#             if finger_clearance:
#                 try:
#                     tool_polygon, center = place_finger_cut_adjusted(
#                         tool_polygon, points_inch, finger_centers, final_polygons_inch
#                     )
#                 except FingerCutOverlapError:
#                     tool_polygon = original_polygons[-1]
            
#             exterior_coords = polygon_to_exterior_coords(tool_polygon)
#             if len(exterior_coords) < 3:
#                 continue
            
#             msp.add_spline(exterior_coords, degree=3, dxfattribs={"layer": "TOOLS"})
#             final_polygons_inch.append(tool_polygon)
            
#         except ValueError as e:
#             logger.warning(f"Skipping contour: {e}")

#     dxf_filepath = os.path.join("./outputs", "out.dxf")
#     doc.saveas(dxf_filepath)
#     return dxf_filepath, final_polygons_inch, original_polygons




def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
    doc = ezdxf.new(units=ezdxf.units.MM)
    doc.header["$INSUNITS"] = ezdxf.units.MM
    msp = doc.modelspace()
    final_polygons_inch = []
    finger_centers = []
    original_polygons = []

    # Scale correction factor based on your analysis
    scale_correction = 1.079

    for contour in inflated_contours:
        try:
            resampled_contour = resample_contour(contour)  

            points_inch = [(x * scaling_factor, (height - y) * scaling_factor) 
                          for x, y in resampled_contour]

            if len(points_inch) < 3:
                continue

            tool_polygon = build_tool_polygon(points_inch)
            original_polygons.append(tool_polygon)

            if finger_clearance:
                try:
                    tool_polygon, center = place_finger_cut_adjusted(
                        tool_polygon, points_inch, finger_centers, final_polygons_inch
                    )
                except FingerCutOverlapError:
                    tool_polygon = original_polygons[-1]

            exterior_coords = polygon_to_exterior_coords(tool_polygon)
            if len(exterior_coords) < 3:
                continue

            # Apply scale correction AFTER finger cuts and polygon adjustments
            corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]

            msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
            final_polygons_inch.append(tool_polygon)

        except ValueError as e:
            logger.warning(f"Skipping contour: {e}")

    dxf_filepath = os.path.join("./outputs", "out.dxf")
    doc.saveas(dxf_filepath)
    return dxf_filepath, final_polygons_inch, original_polygons





def build_tool_polygon(points_inch):
    return Polygon(points_inch)



def polygon_to_exterior_coords(poly):
    logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")

    try:
        # 1) If it's a GeometryCollection or MultiPolygon, fuse everything into one shape
        if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
            logger.debug(f"Performing unary_union on {poly.geom_type}")
            unified = unary_union(poly)
            if unified.is_empty:
                logger.warning("unary_union produced an empty geometry; returning empty list")
                return []
            # If union still yields multiple disjoint pieces, pick the largest Polygon
            if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
                largest = None
                max_area = 0.0
                for g in getattr(unified, "geoms", []):
                    if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
                        max_area = g.area
                        largest = g
                if largest is None:
                    logger.warning("No valid Polygon found in unified geometry; returning empty list")
                    return []
                poly = largest
            else:
                # Now unified should be a single Polygon or LinearRing
                poly = unified

        # 2) At this point, we must have a single Polygon (or something with an exterior)
        if not hasattr(poly, "exterior") or poly.exterior is None:
            logger.warning("Input geometry has no exterior ring; returning empty list")
            return []

        raw_coords = list(poly.exterior.coords)
        total = len(raw_coords)
        logger.info(f"Extracted {total} raw exterior coordinates")

        if total == 0:
            return []

        # 3) Subsample coordinates to at most 100 points (evenly spaced)
        max_pts = 100
        if total > max_pts:
            step = total // max_pts
            sampled = [raw_coords[i] for i in range(0, total, step)]
            # Ensure we include the last point to close the loop
            if sampled[-1] != raw_coords[-1]:
                sampled.append(raw_coords[-1])
            logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
            return sampled
        else:
            return raw_coords

    except Exception as e:
        logger.error(f"Error in polygon_to_exterior_coords: {e}")
        return []








def place_finger_cut_adjusted(
    tool_polygon: Polygon,
    points_inch: list,
    existing_centers: list,
    all_polygons: list,
    circle_diameter: float = 25.4,
    min_gap: float = 0.5,
    max_attempts: int = 100
) -> (Polygon, tuple):
    logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")

    from shapely.geometry import Point
    import numpy as np
    import time
    import random

    # Fallback: if we run out of time or attempts, place in the "middle" of the outline
    def fallback_solution():
        logger.warning("Using fallback approach for finger cut placement")
        # Pick the midpoint of the original outline as a last-resort center
        fallback_center = points_inch[len(points_inch) // 2]
        r = circle_diameter / 2.0
        fallback_circle = Point(fallback_center).buffer(r, resolution=32)
        try:
            union_poly = tool_polygon.union(fallback_circle)
        except Exception as e:
            logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
            union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))

        existing_centers.append(fallback_center)
        logger.info(f"Fallback finger cut placed at {fallback_center}")
        return union_poly, fallback_center

    # Precompute values
    r = circle_diameter / 2.0
    needed_center_dist = circle_diameter + min_gap

    # 1) Get perimeter coordinates of this polygon
    raw_perimeter = polygon_to_exterior_coords(tool_polygon)
    if not raw_perimeter:
        logger.warning("No valid exterior coords found; using fallback immediately")
        return fallback_solution()

    # 2) Possibly subsample to at most 100 perimeter points
    if len(raw_perimeter) > 100:
        step = len(raw_perimeter) // 100
        perimeter_coords = raw_perimeter[::step]
        logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
    else:
        perimeter_coords = raw_perimeter[:]

    # 3) Randomize the order to avoid bias
    indices = list(range(len(perimeter_coords)))
    random.shuffle(indices)
    logger.debug(f"Shuffled perimeter indices for candidate order")

    # 4) Non-blocking timeout setup
    start_time = time.time()
    timeout_secs = 5.0  # leave ~0.1s margin

    attempts = 0
    try:
        while attempts < max_attempts:
            # 5) Abort if we're running out of time
            if time.time() - start_time > timeout_secs - 0.1:
                logger.warning(f"Approaching timeout after {attempts} attempts")
                return fallback_solution()

            # 6) For each shuffled perimeter point, try small offsets
            for idx in indices:
                # Check timeout inside the loop as well
                if time.time() - start_time > timeout_secs - 0.05:
                    logger.warning("Timeout during candidate-point loop")
                    return fallback_solution()

                cx, cy = perimeter_coords[idx]
                # Try five small offsets: (0,0), (±min_gap/2, 0), (0, ±min_gap/2)
                for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
                    candidate_center = (cx + dx, cy + dy)

                    # 6a) Check distance to existing finger centers
                    too_close_finger = any(
                        np.hypot(candidate_center[0] - ex, candidate_center[1] - ey) 
                        < needed_center_dist 
                        for (ex, ey) in existing_centers
                    )
                    if too_close_finger:
                        continue

                    # 6b) Build candidate circle with reduced resolution for speed
                    candidate_circle = Point(candidate_center).buffer(r, resolution=32)

                    # 6c) Must overlap ≥30% with this polygon
                    try:
                        inter_area = tool_polygon.intersection(candidate_circle).area
                    except Exception:
                        continue

                    if inter_area < 0.3 * candidate_circle.area:
                        continue

                    # 6d) Must not intersect or even "touch" any other polygon (buffered by min_gap)
                    invalid = False
                    for other_poly in all_polygons:
                        if other_poly.equals(tool_polygon):
                            # Don't compare against itself
                            continue
                        # Buffer the other polygon by min_gap to enforce a strict clearance
                        if other_poly.buffer(min_gap).intersects(candidate_circle) or \
                           other_poly.buffer(min_gap).touches(candidate_circle):
                            invalid = True
                            break
                    if invalid:
                        continue

                    # 6e) Candidate passes all tests → union and return
                    try:
                        union_poly = tool_polygon.union(candidate_circle)
                        # If union is a MultiPolygon (more than one piece), reject
                        if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
                            continue
                        # If union didn't change anything (no real cut), reject
                        if union_poly.equals(tool_polygon):
                            continue
                    except Exception:
                        continue

                    existing_centers.append(candidate_center)
                    logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
                    return union_poly, candidate_center

            attempts += 1
            # If we've done half the attempts and we're near timeout, bail out
            if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
                logger.warning(f"Approaching timeout (attempt {attempts})")
                return fallback_solution()

            logger.debug(f"Completed iteration {attempts}/{max_attempts}")

        # If we exit loop without finding a valid spot
        logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
        return fallback_solution()

    except Exception as e:
        logger.error(f"Error in place_finger_cut_adjusted: {e}")
        return fallback_solution()










def extract_outlines(binary_image: np.ndarray) -> tuple:
    contours, _ = cv2.findContours(
        binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
    )

    outline_image = np.full_like(binary_image, 255)  # White background

    return outline_image, contours




def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
    """Rounds mask edges using contour smoothing."""
    if radius_mm <= 0 or scaling_factor <= 0:
        return mask
    
    radius_px = max(1, int(radius_mm / scaling_factor))  # Ensure min 1px
    
    # Handle small objects
    if np.count_nonzero(mask) < 500:  # Small object threshold
        return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
    
    # Existing contour processing with improvements:
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    
    # NEW: Filter small contours
    contours = [c for c in contours if cv2.contourArea(c) > 100]
    smoothed_contours = []
    
    for contour in contours:
        try:
            # Resample with radius-based smoothing
            resampled = resample_contour(contour, radius_px)
            resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
            smoothed_contours.append(resampled)
        except Exception as e:
            logger.warning(f"Error smoothing contour: {e}")
            smoothed_contours.append(contour)  # Fallback to original contour
    
    # Draw smoothed contours
    rounded = np.zeros_like(mask)
    cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
    
    return rounded


def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
    print(f"DEBUG: Image shape: {image.shape}, dtype: {image.dtype}, range: {image.min()}-{image.max()}")

    coin_size_mm = 20.0

    if offset_unit == "inches":
        offset *= 25.4

    if edge_radius is None or edge_radius == 0:
        edge_radius = 0.0001

    if offset < 0:
        raise gr.Error("Offset Value Can't be negative")

    try:
        reference_obj_img, scaling_box_coords = detect_reference_square(image)
    except ReferenceBoxNotDetectedError as e:
        return (
        None,
        None,
        None,
        None,
        f"Error: {str(e)}"
    )
    except Exception as e:
        raise gr.Error(f"Error processing image: {str(e)}")

    reference_obj_img = make_square(reference_obj_img)
    
    # Use U2NETP for reference object background removal
    reference_square_mask = remove_bg_u2netp(reference_obj_img)
    reference_square_mask = resize_img(reference_square_mask, reference_obj_img.shape[:2][::-1])

    try:
        scaling_factor = calculate_scaling_factor(
            target_image=reference_square_mask,
            reference_obj_size_mm=coin_size_mm,
            feature_detector="ORB",
        )
    except Exception as e:
        scaling_factor = None
        logger.warning(f"Error calculating scaling factor: {e}")

    if not scaling_factor:
        ref_size_px = (reference_square_mask.shape[0] + reference_square_mask.shape[1]) / 2
        scaling_factor = 20.0 / ref_size_px
        logger.info(f"Fallback scaling: {scaling_factor:.4f} mm/px using 20mm reference")

    # Use BiRefNet for main object background removal
    orig_size = image.shape[:2]
    objects_mask = remove_bg(image)
    processed_size = objects_mask.shape[:2]

    # REMOVE ALL COINS from mask:
    res = reference_detector_global.predict(image, conf=0.05)
    boxes = res[0].cpu().boxes.xyxy if res and len(res) > 0 else []

    for box in boxes:
        objects_mask = exclude_scaling_box(
            objects_mask,
            box,
            orig_size,
            processed_size,
            expansion_factor=1.2,
        )

    objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))

    # offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
    # dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
    # Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
    # dilated_mask_orig = dilated_mask.copy()

    # #if edge_radius > 0:
    #     # Use morphological rounding instead of contour-based
    # rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
    # #else:
    #     #rounded_mask = objects_mask.copy()
    
    # # Apply dilation AFTER rounding
    # offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
    # kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
    # dilated_mask = cv2.dilate(rounded_mask, kernel)
    # Apply edge rounding first
    rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)

    # Apply dilation AFTER rounding
    offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
    kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
    final_dilated_mask = cv2.dilate(rounded_mask, kernel)

    # Save for debugging
    Image.fromarray(final_dilated_mask).save("./outputs/scaled_mask_original.jpg")
        

    outlines, contours = extract_outlines(final_dilated_mask)

    try:
        dxf, finger_polygons, original_polygons = save_dxf_spline(
            contours,
            scaling_factor,
            processed_size[0],
            finger_clearance=(finger_clearance == "On")
        )
    except FingerCutOverlapError as e:
        raise gr.Error(str(e))

    shrunked_img_contours = image.copy()

    if finger_clearance == "On":
        outlines = np.full_like(final_dilated_mask, 255)
        for poly in finger_polygons:
            try:
                coords = np.array([
                    (int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
                    for x, y in poly.exterior.coords
                ], np.int32).reshape((-1, 1, 2))

                cv2.drawContours(shrunked_img_contours, [coords], -1, 0, thickness=2)
                cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
            except Exception as e:
                logger.warning(f"Failed to draw finger cut: {e}")
                continue
    else:
        outlines = np.full_like(final_dilated_mask, 255)
        cv2.drawContours(shrunked_img_contours, contours, -1, 0, thickness=2)
        cv2.drawContours(outlines, contours, -1, 0, thickness=2)

    return (
    shrunked_img_contours,
    outlines,
    dxf,
    final_dilated_mask,
    f"{scaling_factor:.4f}")


def predict_simple(image):
    """
    Only image in → returns (annotated, outlines, dxf, mask).
    Uses offset=0 mm, no fillet, no finger-cut.
    """
    ann, outlines, dxf_path, mask, _ = predict_og(
        image,
        offset=0,
        offset_unit="mm",
        edge_radius=0,
        finger_clearance="Off",
    )
    return ann, outlines, dxf_path, mask

def predict_middle(image, enable_fillet, fillet_value_mm):
    """
    image + (On/Off) fillet toggle + fillet radius → returns (annotated, outlines, dxf, mask).
    Uses offset=0 mm, finger-cut off.
    """
    radius = fillet_value_mm if enable_fillet == "On" else 0
    ann, outlines, dxf_path, mask, _ = predict_og(
        image,
        offset=0,
        offset_unit="mm",
        edge_radius=radius,
        finger_clearance="Off",
    )
    return ann, outlines, dxf_path, mask

def predict_full(image, enable_fillet, fillet_value_mm, enable_finger_cut):
    """
    image + fillet toggle/value + finger-cut toggle → returns (annotated, outlines, dxf, mask).
    Uses offset=0 mm.
    """
    radius = fillet_value_mm if enable_fillet == "On" else 0
    finger_flag = "On" if enable_finger_cut == "On" else "Off"
    ann, outlines, dxf_path, mask, _ = predict_og(
        image,
        offset=0,
        offset_unit="mm",
        edge_radius=radius,
        finger_clearance=finger_flag,
    )
    return ann, outlines, dxf_path, mask




def update_interface(language):
    return [
        gr.Image(label=TRANSLATIONS[language]["input_image"], type="numpy"),
        gr.Row([
            gr.Number(label=TRANSLATIONS[language]["offset_value"], value=0),
            gr.Dropdown(["mm", "inches"], value="mm", 
                      label=TRANSLATIONS[language]["offset_unit"])
        ]),
        gr.Slider(minimum=0,maximum=20,step=1,value=5,label=TRANSLATIONS[language]["edge_radius"],visible=False,interactive=True),
        gr.Radio(choices=["On", "Off"],value="Off",label=TRANSLATIONS[language]["enable_radius"],),
        gr.Image(label=TRANSLATIONS[language]["output_image"]),
        gr.Image(label=TRANSLATIONS[language]["outlines"]),
        gr.File(label=TRANSLATIONS[language]["dxf_file"]),
        gr.Image(label=TRANSLATIONS[language]["mask"]),
        gr.Textbox(label=TRANSLATIONS[language]["scaling_factor"],placeholder=TRANSLATIONS[language]["scaling_placeholder"],),
    ]

if __name__ == "__main__":
    os.makedirs("./outputs", exist_ok=True)

    with gr.Blocks() as demo:
        language = gr.Dropdown(
            choices=["english", "dutch"],
            value="english",
            label="Select Language",
            interactive=True
        )
        
        input_image = gr.Image(label=TRANSLATIONS["english"]["input_image"], type="numpy")
        
        with gr.Row():
            offset = gr.Number(label=TRANSLATIONS["english"]["offset_value"], value=0)
            offset_unit = gr.Dropdown([
                "mm", "inches"
            ], value="mm", label=TRANSLATIONS["english"]["offset_unit"])
            
        finger_toggle = gr.Radio(
            choices=["On", "Off"],
            value="Off",
            label=TRANSLATIONS["english"]["enable_finger"]
        )
        
        edge_radius = gr.Slider(
            minimum=0,
            maximum=20,
            step=1,
            value=5,
            label=TRANSLATIONS["english"]["edge_radius"],
            visible=False,
            interactive=True
        )
        
        radius_toggle = gr.Radio(
            choices=["On", "Off"],
            value="Off",
            label=TRANSLATIONS["english"]["enable_radius"],
            interactive=True
        )
        
        def toggle_radius(choice):
            if choice == "On":
                return gr.Slider(visible=True)
            return gr.Slider(visible=False, value=0)

        radius_toggle.change(
            fn=toggle_radius,
            inputs=radius_toggle,
            outputs=edge_radius
        )
        
        output_image = gr.Image(label=TRANSLATIONS["english"]["output_image"])
        outlines = gr.Image(label=TRANSLATIONS["english"]["outlines"])
        dxf_file = gr.File(label=TRANSLATIONS["english"]["dxf_file"])
        mask = gr.Image(label=TRANSLATIONS["english"]["mask"])
        
        scaling = gr.Textbox(
            label=TRANSLATIONS["english"]["scaling_factor"],
            placeholder=TRANSLATIONS["english"]["scaling_placeholder"]
        )

        submit_btn = gr.Button("Submit")
        
        language.change(
            fn=lambda x: [
                gr.update(label=TRANSLATIONS[x]["input_image"]),
                gr.update(label=TRANSLATIONS[x]["offset_value"]),
                gr.update(label=TRANSLATIONS[x]["offset_unit"]),
                gr.update(label=TRANSLATIONS[x]["output_image"]),
                gr.update(label=TRANSLATIONS[x]["outlines"]),
                gr.update(label=TRANSLATIONS[x]["enable_finger"]),
                gr.update(label=TRANSLATIONS[x]["dxf_file"]),
                gr.update(label=TRANSLATIONS[x]["mask"]),
                gr.update(label=TRANSLATIONS[x]["enable_radius"]),
                gr.update(label=TRANSLATIONS[x]["edge_radius"]),
                gr.update(
                    label=TRANSLATIONS[x]["scaling_factor"],
                    placeholder=TRANSLATIONS[x]["scaling_placeholder"]
                ),
            ],
            inputs=[language],
            outputs=[
                input_image, offset, offset_unit,
                output_image, outlines, finger_toggle, dxf_file,
                mask, radius_toggle, edge_radius, scaling
            ]
        )
        
        def custom_predict_and_format(*args):
            output_image, outlines, dxf_path, mask, scaling = predict_og(*args)
            if output_image is None:
                return (
                    None, None, None, None, "Reference coin not detected!"
                )
            return (
                output_image, outlines, dxf_path, mask, scaling
            )

        submit_btn.click(
            fn=custom_predict_and_format,
            inputs=[input_image, offset, offset_unit, edge_radius, finger_toggle],
            outputs=[output_image, outlines, dxf_file, mask, scaling]
        )


        gr.Examples(
            examples=[
                ["./examples/Test20.jpg", 0, "mm"],
                ["./examples/Test21.jpg", 0, "mm"],
                ["./examples/Test22.jpg", 0, "mm"],
                ["./examples/Test23.jpg", 0, "mm"],
            ],
            inputs=[input_image, offset, offset_unit]
        )

    demo.launch(share=True)