Spaces:
Sleeping
Sleeping
File size: 36,694 Bytes
4323222 4aff382 4323222 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 f334e46 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 4aff382 4323222 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4323222 5a24f0e 8164f36 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4323222 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 4323222 5a24f0e 4aff382 5a24f0e 4323222 4aff382 5a24f0e 4aff382 5a24f0e 4aff382 5a24f0e 4323222 5a24f0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 |
import os
from pathlib import Path
from typing import List, Union
from PIL import Image
import ezdxf.units
import numpy as np
import torch
from torchvision import transforms
from ultralytics import YOLOWorld, YOLO
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import save_one_box
from transformers import AutoModelForImageSegmentation
import cv2
import ezdxf
import gradio as gr
import gc
from scalingtestupdated import calculate_scaling_factor
from scipy.interpolate import splprep, splev
from scipy.ndimage import gaussian_filter1d
import json
import time
import signal
from shapely.ops import unary_union
from shapely.geometry import MultiPolygon, GeometryCollection, Polygon, Point
from u2netp import U2NETP # Add U2NETP import
import logging
import shutil
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create cache directory for models
CACHE_DIR = os.path.join(os.path.dirname(__file__), ".cache")
os.makedirs(CACHE_DIR, exist_ok=True)
# Custom Exception Classes
class TimeoutReachedError(Exception):
pass
class BoundaryOverlapError(Exception):
pass
class TextOverlapError(Exception):
pass
class ReferenceBoxNotDetectedError(Exception):
"""Raised when the Reference coin cannot be detected in the image"""
pass
class FingerCutOverlapError(Exception):
"""Raised when finger cuts overlap with existing geometry"""
def __init__(self, message="There was an overlap with fingercuts... Please try again to generate dxf."):
super().__init__(message)
# Global model initialization
print("Loading models...")
start_time = time.time()
# Load YOLO reference model
reference_model_path = os.path.join("", "best1.pt")
if not os.path.exists(reference_model_path):
shutil.copy("best1.pt", reference_model_path)
reference_detector_global = YOLO(reference_model_path)
# Load U2NETP model
u2net_model_path = os.path.join(CACHE_DIR, "u2netp.pth")
if not os.path.exists(u2net_model_path):
shutil.copy("u2netp.pth", u2net_model_path)
u2net_global = U2NETP(3, 1)
u2net_global.load_state_dict(torch.load(u2net_model_path, map_location="cpu"))
# Load BiRefNet model
birefnet = AutoModelForImageSegmentation.from_pretrained(
"zhengpeng7/BiRefNet", trust_remote_code=True, cache_dir=CACHE_DIR
)
device = "cpu"
torch.set_float32_matmul_precision(["high", "highest"][0])
# Move models to device
u2net_global.to(device)
u2net_global.eval()
birefnet.to(device)
birefnet.eval()
# Define transforms
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Language translations dictionary remains unchanged
TRANSLATIONS = {
"english": {
"input_image": "Input Image",
"offset_value": "Offset value",
"offset_unit": "Offset unit (mm/in)",
"enable_finger": "Enable Finger Clearance",
"edge_radius": "Edge rounding radius (mm)",
"output_image": "Output Image",
"outlines": "Outlines of Objects",
"dxf_file": "DXF file",
"mask": "Mask",
"enable_radius": "Enable Edge Rounding",
"radius_disabled": "Rounding Disabled",
"scaling_factor": "Scaling Factor(mm)",
"scaling_placeholder": "Every pixel is equal to mentioned number in millimeters",
"language_selector": "Select Language",
},
"dutch": {
"input_image": "Invoer Afbeelding",
"offset_value": "Offset waarde",
"offset_unit": "Offset unit (mm/inch)",
"enable_finger": "Finger Clearance inschakelen",
"edge_radius": "Ronding radius rand (mm)",
"output_image": "Uitvoer Afbeelding",
"outlines": "Contouren van Objecten",
"dxf_file": "DXF bestand",
"mask": "Masker",
"enable_radius": "Ronding inschakelen",
"radius_disabled": "Ronding uitgeschakeld",
"scaling_factor": "Schalingsfactor(mm)",
"scaling_placeholder": "Elke pixel is gelijk aan genoemd aantal in millimeters",
"language_selector": "Selecteer Taal",
}
}
def remove_bg_u2netp(image: np.ndarray) -> np.ndarray:
"""Remove background using U2NETP model specifically for reference objects"""
try:
image_pil = Image.fromarray(image)
transform_u2netp = transforms.Compose([
transforms.Resize((320, 320)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
input_tensor = transform_u2netp(image_pil).unsqueeze(0).to(device)
with torch.no_grad():
outputs = u2net_global(input_tensor)
pred = outputs[0]
pred = (pred - pred.min()) / (pred.max() - pred.min() + 1e-8)
pred_np = pred.squeeze().cpu().numpy()
pred_np = cv2.resize(pred_np, (image_pil.width, image_pil.height))
pred_np = (pred_np * 255).astype(np.uint8)
return pred_np
except Exception as e:
logger.error(f"Error in U2NETP background removal: {e}")
raise
def remove_bg(image: np.ndarray) -> np.ndarray:
"""Remove background using BiRefNet model for main objects"""
try:
image = Image.fromarray(image)
input_images = transform_image(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil: Image = transforms.ToPILImage()(pred)
scale_ratio = 1024 / max(image.size)
scaled_size = (int(image.size[0] * scale_ratio), int(image.size[1] * scale_ratio))
return np.array(pred_pil.resize(scaled_size))
except Exception as e:
logger.error(f"Error in BiRefNet background removal: {e}")
raise
def resize_img(img: np.ndarray, resize_dim):
return np.array(Image.fromarray(img).resize(resize_dim))
def make_square(img: np.ndarray):
"""Make the image square by padding"""
height, width = img.shape[:2]
max_dim = max(height, width)
pad_height = (max_dim - height) // 2
pad_width = (max_dim - width) // 2
pad_height_extra = max_dim - height - 2 * pad_height
pad_width_extra = max_dim - width - 2 * pad_width
if len(img.shape) == 3: # Color image
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
(0, 0),
),
mode="edge",
)
else: # Grayscale image
padded = np.pad(
img,
(
(pad_height, pad_height + pad_height_extra),
(pad_width, pad_width + pad_width_extra),
),
mode="edge",
)
return padded
def detect_reference_square(img) -> tuple:
"""Detect reference square in the image and ignore other coins"""
try:
res = reference_detector_global.predict(img, conf=0.75)
if not res or len(res) == 0 or len(res[0].boxes) == 0:
raise ReferenceBoxNotDetectedError("Unable to detect the reference coin in the image.")
# Get all detected boxes
boxes = res[0].cpu().boxes.xyxy
# Find the largest box (most likely the reference coin)
largest_box = None
max_area = 0
for box in boxes:
x_min, y_min, x_max, y_max = box
area = (x_max - x_min) * (y_max - y_min)
if area > max_area:
max_area = area
largest_box = box
return (
save_one_box(largest_box.unsqueeze(0), img, save=False),
largest_box
)
except Exception as e:
if not isinstance(e, ReferenceBoxNotDetectedError):
logger.error(f"Error in reference square detection: {e}")
raise ReferenceBoxNotDetectedError("Error detecting reference coin. Please try again with a clearer image.")
raise
def exclude_scaling_box(
image: np.ndarray,
bbox: np.ndarray,
orig_size: tuple,
processed_size: tuple,
expansion_factor: float = 1.2,
) -> np.ndarray:
x_min, y_min, x_max, y_max = map(int, bbox)
scale_x = processed_size[1] / orig_size[1]
scale_y = processed_size[0] / orig_size[0]
x_min = int(x_min * scale_x)
x_max = int(x_max * scale_x)
y_min = int(y_min * scale_y)
y_max = int(y_max * scale_y)
box_width = x_max - x_min
box_height = y_max - y_min
expanded_x_min = max(0, int(x_min - (expansion_factor - 1) * box_width / 2))
expanded_x_max = min(
image.shape[1], int(x_max + (expansion_factor - 1) * box_width / 2)
)
expanded_y_min = max(0, int(y_min - (expansion_factor - 1) * box_height / 2))
expanded_y_max = min(
image.shape[0], int(y_max + (expansion_factor - 1) * box_height / 2)
)
image[expanded_y_min:expanded_y_max, expanded_x_min:expanded_x_max] = 0
return image
def resample_contour(contour, edge_radius_px: int = 0):
"""Resample contour with radius-aware smoothing and periodic handling."""
logger.info(f"Starting resample_contour with contour of shape {contour.shape}")
num_points = 1500
sigma = max(2, int(edge_radius_px) // 4) # Adjust sigma based on radius
if len(contour) < 4: # Need at least 4 points for spline with periodic condition
error_msg = f"Contour must have at least 4 points, but has {len(contour)} points."
logger.error(error_msg)
raise ValueError(error_msg)
try:
contour = contour[:, 0, :]
logger.debug(f"Reshaped contour to shape {contour.shape}")
# Ensure contour is closed by making start and end points the same
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack([contour, contour[0]])
# Create periodic spline representation
tck, u = splprep(contour.T, u=None, s=0, per=True)
# Evaluate spline at evenly spaced points
u_new = np.linspace(u.min(), u.max(), num_points)
x_new, y_new = splev(u_new, tck, der=0)
# Apply Gaussian smoothing with wrap-around
if sigma > 0:
x_new = gaussian_filter1d(x_new, sigma=sigma, mode='wrap')
y_new = gaussian_filter1d(y_new, sigma=sigma, mode='wrap')
# Re-close the contour after smoothing
x_new[-1] = x_new[0]
y_new[-1] = y_new[0]
result = np.array([x_new, y_new]).T
logger.info(f"Completed resample_contour with result shape {result.shape}")
return result
except Exception as e:
logger.error(f"Error in resample_contour: {e}")
raise
# def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
# doc = ezdxf.new(units=ezdxf.units.MM)
# doc.header["$INSUNITS"] = ezdxf.units.MM
# msp = doc.modelspace()
# final_polygons_inch = []
# finger_centers = []
# original_polygons = []
# for contour in inflated_contours:
# try:
# # Removed the second parameter since it was causing the error
# resampled_contour = resample_contour(contour)
# points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
# for x, y in resampled_contour]
# if len(points_inch) < 3:
# continue
# tool_polygon = build_tool_polygon(points_inch)
# original_polygons.append(tool_polygon)
# if finger_clearance:
# try:
# tool_polygon, center = place_finger_cut_adjusted(
# tool_polygon, points_inch, finger_centers, final_polygons_inch
# )
# except FingerCutOverlapError:
# tool_polygon = original_polygons[-1]
# exterior_coords = polygon_to_exterior_coords(tool_polygon)
# if len(exterior_coords) < 3:
# continue
# msp.add_spline(exterior_coords, degree=3, dxfattribs={"layer": "TOOLS"})
# final_polygons_inch.append(tool_polygon)
# except ValueError as e:
# logger.warning(f"Skipping contour: {e}")
# dxf_filepath = os.path.join("./outputs", "out.dxf")
# doc.saveas(dxf_filepath)
# return dxf_filepath, final_polygons_inch, original_polygons
def save_dxf_spline(inflated_contours, scaling_factor, height, finger_clearance=False):
doc = ezdxf.new(units=ezdxf.units.MM)
doc.header["$INSUNITS"] = ezdxf.units.MM
msp = doc.modelspace()
final_polygons_inch = []
finger_centers = []
original_polygons = []
# Scale correction factor based on your analysis
scale_correction = 1.079
for contour in inflated_contours:
try:
resampled_contour = resample_contour(contour)
points_inch = [(x * scaling_factor, (height - y) * scaling_factor)
for x, y in resampled_contour]
if len(points_inch) < 3:
continue
tool_polygon = build_tool_polygon(points_inch)
original_polygons.append(tool_polygon)
if finger_clearance:
try:
tool_polygon, center = place_finger_cut_adjusted(
tool_polygon, points_inch, finger_centers, final_polygons_inch
)
except FingerCutOverlapError:
tool_polygon = original_polygons[-1]
exterior_coords = polygon_to_exterior_coords(tool_polygon)
if len(exterior_coords) < 3:
continue
# Apply scale correction AFTER finger cuts and polygon adjustments
corrected_coords = [(x * scale_correction, y * scale_correction) for x, y in exterior_coords]
msp.add_spline(corrected_coords, degree=3, dxfattribs={"layer": "TOOLS"})
final_polygons_inch.append(tool_polygon)
except ValueError as e:
logger.warning(f"Skipping contour: {e}")
dxf_filepath = os.path.join("./outputs", "out.dxf")
doc.saveas(dxf_filepath)
return dxf_filepath, final_polygons_inch, original_polygons
def build_tool_polygon(points_inch):
return Polygon(points_inch)
def polygon_to_exterior_coords(poly):
logger.info(f"Starting polygon_to_exterior_coords with input geometry type: {poly.geom_type}")
try:
# 1) If it's a GeometryCollection or MultiPolygon, fuse everything into one shape
if poly.geom_type == "GeometryCollection" or poly.geom_type == "MultiPolygon":
logger.debug(f"Performing unary_union on {poly.geom_type}")
unified = unary_union(poly)
if unified.is_empty:
logger.warning("unary_union produced an empty geometry; returning empty list")
return []
# If union still yields multiple disjoint pieces, pick the largest Polygon
if unified.geom_type == "GeometryCollection" or unified.geom_type == "MultiPolygon":
largest = None
max_area = 0.0
for g in getattr(unified, "geoms", []):
if hasattr(g, "area") and g.area > max_area and hasattr(g, "exterior"):
max_area = g.area
largest = g
if largest is None:
logger.warning("No valid Polygon found in unified geometry; returning empty list")
return []
poly = largest
else:
# Now unified should be a single Polygon or LinearRing
poly = unified
# 2) At this point, we must have a single Polygon (or something with an exterior)
if not hasattr(poly, "exterior") or poly.exterior is None:
logger.warning("Input geometry has no exterior ring; returning empty list")
return []
raw_coords = list(poly.exterior.coords)
total = len(raw_coords)
logger.info(f"Extracted {total} raw exterior coordinates")
if total == 0:
return []
# 3) Subsample coordinates to at most 100 points (evenly spaced)
max_pts = 100
if total > max_pts:
step = total // max_pts
sampled = [raw_coords[i] for i in range(0, total, step)]
# Ensure we include the last point to close the loop
if sampled[-1] != raw_coords[-1]:
sampled.append(raw_coords[-1])
logger.info(f"Downsampled perimeter from {total} to {len(sampled)} points")
return sampled
else:
return raw_coords
except Exception as e:
logger.error(f"Error in polygon_to_exterior_coords: {e}")
return []
def place_finger_cut_adjusted(
tool_polygon: Polygon,
points_inch: list,
existing_centers: list,
all_polygons: list,
circle_diameter: float = 25.4,
min_gap: float = 0.5,
max_attempts: int = 100
) -> (Polygon, tuple):
logger.info(f"Starting place_finger_cut_adjusted with {len(points_inch)} input points")
from shapely.geometry import Point
import numpy as np
import time
import random
# Fallback: if we run out of time or attempts, place in the "middle" of the outline
def fallback_solution():
logger.warning("Using fallback approach for finger cut placement")
# Pick the midpoint of the original outline as a last-resort center
fallback_center = points_inch[len(points_inch) // 2]
r = circle_diameter / 2.0
fallback_circle = Point(fallback_center).buffer(r, resolution=32)
try:
union_poly = tool_polygon.union(fallback_circle)
except Exception as e:
logger.warning(f"Fallback union failed ({e}); trying buffer-union fallback")
union_poly = tool_polygon.buffer(0).union(fallback_circle.buffer(0))
existing_centers.append(fallback_center)
logger.info(f"Fallback finger cut placed at {fallback_center}")
return union_poly, fallback_center
# Precompute values
r = circle_diameter / 2.0
needed_center_dist = circle_diameter + min_gap
# 1) Get perimeter coordinates of this polygon
raw_perimeter = polygon_to_exterior_coords(tool_polygon)
if not raw_perimeter:
logger.warning("No valid exterior coords found; using fallback immediately")
return fallback_solution()
# 2) Possibly subsample to at most 100 perimeter points
if len(raw_perimeter) > 100:
step = len(raw_perimeter) // 100
perimeter_coords = raw_perimeter[::step]
logger.info(f"Subsampled perimeter from {len(raw_perimeter)} to {len(perimeter_coords)} points")
else:
perimeter_coords = raw_perimeter[:]
# 3) Randomize the order to avoid bias
indices = list(range(len(perimeter_coords)))
random.shuffle(indices)
logger.debug(f"Shuffled perimeter indices for candidate order")
# 4) Non-blocking timeout setup
start_time = time.time()
timeout_secs = 5.0 # leave ~0.1s margin
attempts = 0
try:
while attempts < max_attempts:
# 5) Abort if we're running out of time
if time.time() - start_time > timeout_secs - 0.1:
logger.warning(f"Approaching timeout after {attempts} attempts")
return fallback_solution()
# 6) For each shuffled perimeter point, try small offsets
for idx in indices:
# Check timeout inside the loop as well
if time.time() - start_time > timeout_secs - 0.05:
logger.warning("Timeout during candidate-point loop")
return fallback_solution()
cx, cy = perimeter_coords[idx]
# Try five small offsets: (0,0), (±min_gap/2, 0), (0, ±min_gap/2)
for dx, dy in [(0, 0), (-min_gap/2, 0), (min_gap/2, 0), (0, -min_gap/2), (0, min_gap/2)]:
candidate_center = (cx + dx, cy + dy)
# 6a) Check distance to existing finger centers
too_close_finger = any(
np.hypot(candidate_center[0] - ex, candidate_center[1] - ey)
< needed_center_dist
for (ex, ey) in existing_centers
)
if too_close_finger:
continue
# 6b) Build candidate circle with reduced resolution for speed
candidate_circle = Point(candidate_center).buffer(r, resolution=32)
# 6c) Must overlap ≥30% with this polygon
try:
inter_area = tool_polygon.intersection(candidate_circle).area
except Exception:
continue
if inter_area < 0.3 * candidate_circle.area:
continue
# 6d) Must not intersect or even "touch" any other polygon (buffered by min_gap)
invalid = False
for other_poly in all_polygons:
if other_poly.equals(tool_polygon):
# Don't compare against itself
continue
# Buffer the other polygon by min_gap to enforce a strict clearance
if other_poly.buffer(min_gap).intersects(candidate_circle) or \
other_poly.buffer(min_gap).touches(candidate_circle):
invalid = True
break
if invalid:
continue
# 6e) Candidate passes all tests → union and return
try:
union_poly = tool_polygon.union(candidate_circle)
# If union is a MultiPolygon (more than one piece), reject
if union_poly.geom_type == "MultiPolygon" and len(union_poly.geoms) > 1:
continue
# If union didn't change anything (no real cut), reject
if union_poly.equals(tool_polygon):
continue
except Exception:
continue
existing_centers.append(candidate_center)
logger.info(f"Finger cut placed successfully at {candidate_center} after {attempts} attempts")
return union_poly, candidate_center
attempts += 1
# If we've done half the attempts and we're near timeout, bail out
if attempts >= (max_attempts // 2) and (time.time() - start_time) > timeout_secs * 0.8:
logger.warning(f"Approaching timeout (attempt {attempts})")
return fallback_solution()
logger.debug(f"Completed iteration {attempts}/{max_attempts}")
# If we exit loop without finding a valid spot
logger.warning(f"No valid spot after {max_attempts} attempts, using fallback")
return fallback_solution()
except Exception as e:
logger.error(f"Error in place_finger_cut_adjusted: {e}")
return fallback_solution()
def extract_outlines(binary_image: np.ndarray) -> tuple:
contours, _ = cv2.findContours(
binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
outline_image = np.full_like(binary_image, 255) # White background
return outline_image, contours
def round_edges(mask: np.ndarray, radius_mm: float, scaling_factor: float) -> np.ndarray:
"""Rounds mask edges using contour smoothing."""
if radius_mm <= 0 or scaling_factor <= 0:
return mask
radius_px = max(1, int(radius_mm / scaling_factor)) # Ensure min 1px
# Handle small objects
if np.count_nonzero(mask) < 500: # Small object threshold
return cv2.dilate(cv2.erode(mask, np.ones((3,3))), np.ones((3,3)))
# Existing contour processing with improvements:
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# NEW: Filter small contours
contours = [c for c in contours if cv2.contourArea(c) > 100]
smoothed_contours = []
for contour in contours:
try:
# Resample with radius-based smoothing
resampled = resample_contour(contour, radius_px)
resampled = resampled.astype(np.int32).reshape((-1, 1, 2))
smoothed_contours.append(resampled)
except Exception as e:
logger.warning(f"Error smoothing contour: {e}")
smoothed_contours.append(contour) # Fallback to original contour
# Draw smoothed contours
rounded = np.zeros_like(mask)
cv2.drawContours(rounded, smoothed_contours, -1, 255, thickness=cv2.FILLED)
return rounded
def predict_og(image, offset, offset_unit, edge_radius, finger_clearance=False):
print(f"DEBUG: Image shape: {image.shape}, dtype: {image.dtype}, range: {image.min()}-{image.max()}")
coin_size_mm = 20.0
if offset_unit == "inches":
offset *= 25.4
if edge_radius is None or edge_radius == 0:
edge_radius = 0.0001
if offset < 0:
raise gr.Error("Offset Value Can't be negative")
try:
reference_obj_img, scaling_box_coords = detect_reference_square(image)
except ReferenceBoxNotDetectedError as e:
return (
None,
None,
None,
None,
f"Error: {str(e)}"
)
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
reference_obj_img = make_square(reference_obj_img)
# Use U2NETP for reference object background removal
reference_square_mask = remove_bg_u2netp(reference_obj_img)
reference_square_mask = resize_img(reference_square_mask, reference_obj_img.shape[:2][::-1])
try:
scaling_factor = calculate_scaling_factor(
target_image=reference_square_mask,
reference_obj_size_mm=coin_size_mm,
feature_detector="ORB",
)
except Exception as e:
scaling_factor = None
logger.warning(f"Error calculating scaling factor: {e}")
if not scaling_factor:
ref_size_px = (reference_square_mask.shape[0] + reference_square_mask.shape[1]) / 2
scaling_factor = 20.0 / ref_size_px
logger.info(f"Fallback scaling: {scaling_factor:.4f} mm/px using 20mm reference")
# Use BiRefNet for main object background removal
orig_size = image.shape[:2]
objects_mask = remove_bg(image)
processed_size = objects_mask.shape[:2]
# REMOVE ALL COINS from mask:
res = reference_detector_global.predict(image, conf=0.05)
boxes = res[0].cpu().boxes.xyxy if res and len(res) > 0 else []
for box in boxes:
objects_mask = exclude_scaling_box(
objects_mask,
box,
orig_size,
processed_size,
expansion_factor=1.2,
)
objects_mask = resize_img(objects_mask, (image.shape[1], image.shape[0]))
# offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
# dilated_mask = cv2.dilate(objects_mask, np.ones((int(offset_pixels), int(offset_pixels)), np.uint8))
# Image.fromarray(dilated_mask).save("./outputs/scaled_mask_original.jpg")
# dilated_mask_orig = dilated_mask.copy()
# #if edge_radius > 0:
# # Use morphological rounding instead of contour-based
# rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
# #else:
# #rounded_mask = objects_mask.copy()
# # Apply dilation AFTER rounding
# offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
# kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
# dilated_mask = cv2.dilate(rounded_mask, kernel)
# Apply edge rounding first
rounded_mask = round_edges(objects_mask, edge_radius, scaling_factor)
# Apply dilation AFTER rounding
offset_pixels = (float(offset) / scaling_factor) * 2 + 1 if scaling_factor else 1
kernel = np.ones((int(offset_pixels), int(offset_pixels)), np.uint8)
final_dilated_mask = cv2.dilate(rounded_mask, kernel)
# Save for debugging
Image.fromarray(final_dilated_mask).save("./outputs/scaled_mask_original.jpg")
outlines, contours = extract_outlines(final_dilated_mask)
try:
dxf, finger_polygons, original_polygons = save_dxf_spline(
contours,
scaling_factor,
processed_size[0],
finger_clearance=(finger_clearance == "On")
)
except FingerCutOverlapError as e:
raise gr.Error(str(e))
shrunked_img_contours = image.copy()
if finger_clearance == "On":
outlines = np.full_like(final_dilated_mask, 255)
for poly in finger_polygons:
try:
coords = np.array([
(int(x / scaling_factor), int(processed_size[0] - y / scaling_factor))
for x, y in poly.exterior.coords
], np.int32).reshape((-1, 1, 2))
cv2.drawContours(shrunked_img_contours, [coords], -1, 0, thickness=2)
cv2.drawContours(outlines, [coords], -1, 0, thickness=2)
except Exception as e:
logger.warning(f"Failed to draw finger cut: {e}")
continue
else:
outlines = np.full_like(final_dilated_mask, 255)
cv2.drawContours(shrunked_img_contours, contours, -1, 0, thickness=2)
cv2.drawContours(outlines, contours, -1, 0, thickness=2)
return (
shrunked_img_contours,
outlines,
dxf,
final_dilated_mask,
f"{scaling_factor:.4f}")
def predict_simple(image):
"""
Only image in → returns (annotated, outlines, dxf, mask).
Uses offset=0 mm, no fillet, no finger-cut.
"""
ann, outlines, dxf_path, mask, _ = predict_og(
image,
offset=0,
offset_unit="mm",
edge_radius=0,
finger_clearance="Off",
)
return ann, outlines, dxf_path, mask
def predict_middle(image, enable_fillet, fillet_value_mm):
"""
image + (On/Off) fillet toggle + fillet radius → returns (annotated, outlines, dxf, mask).
Uses offset=0 mm, finger-cut off.
"""
radius = fillet_value_mm if enable_fillet == "On" else 0
ann, outlines, dxf_path, mask, _ = predict_og(
image,
offset=0,
offset_unit="mm",
edge_radius=radius,
finger_clearance="Off",
)
return ann, outlines, dxf_path, mask
def predict_full(image, enable_fillet, fillet_value_mm, enable_finger_cut):
"""
image + fillet toggle/value + finger-cut toggle → returns (annotated, outlines, dxf, mask).
Uses offset=0 mm.
"""
radius = fillet_value_mm if enable_fillet == "On" else 0
finger_flag = "On" if enable_finger_cut == "On" else "Off"
ann, outlines, dxf_path, mask, _ = predict_og(
image,
offset=0,
offset_unit="mm",
edge_radius=radius,
finger_clearance=finger_flag,
)
return ann, outlines, dxf_path, mask
def update_interface(language):
return [
gr.Image(label=TRANSLATIONS[language]["input_image"], type="numpy"),
gr.Row([
gr.Number(label=TRANSLATIONS[language]["offset_value"], value=0),
gr.Dropdown(["mm", "inches"], value="mm",
label=TRANSLATIONS[language]["offset_unit"])
]),
gr.Slider(minimum=0,maximum=20,step=1,value=5,label=TRANSLATIONS[language]["edge_radius"],visible=False,interactive=True),
gr.Radio(choices=["On", "Off"],value="Off",label=TRANSLATIONS[language]["enable_radius"],),
gr.Image(label=TRANSLATIONS[language]["output_image"]),
gr.Image(label=TRANSLATIONS[language]["outlines"]),
gr.File(label=TRANSLATIONS[language]["dxf_file"]),
gr.Image(label=TRANSLATIONS[language]["mask"]),
gr.Textbox(label=TRANSLATIONS[language]["scaling_factor"],placeholder=TRANSLATIONS[language]["scaling_placeholder"],),
]
if __name__ == "__main__":
os.makedirs("./outputs", exist_ok=True)
with gr.Blocks() as demo:
language = gr.Dropdown(
choices=["english", "dutch"],
value="english",
label="Select Language",
interactive=True
)
input_image = gr.Image(label=TRANSLATIONS["english"]["input_image"], type="numpy")
with gr.Row():
offset = gr.Number(label=TRANSLATIONS["english"]["offset_value"], value=0)
offset_unit = gr.Dropdown([
"mm", "inches"
], value="mm", label=TRANSLATIONS["english"]["offset_unit"])
finger_toggle = gr.Radio(
choices=["On", "Off"],
value="Off",
label=TRANSLATIONS["english"]["enable_finger"]
)
edge_radius = gr.Slider(
minimum=0,
maximum=20,
step=1,
value=5,
label=TRANSLATIONS["english"]["edge_radius"],
visible=False,
interactive=True
)
radius_toggle = gr.Radio(
choices=["On", "Off"],
value="Off",
label=TRANSLATIONS["english"]["enable_radius"],
interactive=True
)
def toggle_radius(choice):
if choice == "On":
return gr.Slider(visible=True)
return gr.Slider(visible=False, value=0)
radius_toggle.change(
fn=toggle_radius,
inputs=radius_toggle,
outputs=edge_radius
)
output_image = gr.Image(label=TRANSLATIONS["english"]["output_image"])
outlines = gr.Image(label=TRANSLATIONS["english"]["outlines"])
dxf_file = gr.File(label=TRANSLATIONS["english"]["dxf_file"])
mask = gr.Image(label=TRANSLATIONS["english"]["mask"])
scaling = gr.Textbox(
label=TRANSLATIONS["english"]["scaling_factor"],
placeholder=TRANSLATIONS["english"]["scaling_placeholder"]
)
submit_btn = gr.Button("Submit")
language.change(
fn=lambda x: [
gr.update(label=TRANSLATIONS[x]["input_image"]),
gr.update(label=TRANSLATIONS[x]["offset_value"]),
gr.update(label=TRANSLATIONS[x]["offset_unit"]),
gr.update(label=TRANSLATIONS[x]["output_image"]),
gr.update(label=TRANSLATIONS[x]["outlines"]),
gr.update(label=TRANSLATIONS[x]["enable_finger"]),
gr.update(label=TRANSLATIONS[x]["dxf_file"]),
gr.update(label=TRANSLATIONS[x]["mask"]),
gr.update(label=TRANSLATIONS[x]["enable_radius"]),
gr.update(label=TRANSLATIONS[x]["edge_radius"]),
gr.update(
label=TRANSLATIONS[x]["scaling_factor"],
placeholder=TRANSLATIONS[x]["scaling_placeholder"]
),
],
inputs=[language],
outputs=[
input_image, offset, offset_unit,
output_image, outlines, finger_toggle, dxf_file,
mask, radius_toggle, edge_radius, scaling
]
)
def custom_predict_and_format(*args):
output_image, outlines, dxf_path, mask, scaling = predict_og(*args)
if output_image is None:
return (
None, None, None, None, "Reference coin not detected!"
)
return (
output_image, outlines, dxf_path, mask, scaling
)
submit_btn.click(
fn=custom_predict_and_format,
inputs=[input_image, offset, offset_unit, edge_radius, finger_toggle],
outputs=[output_image, outlines, dxf_file, mask, scaling]
)
gr.Examples(
examples=[
["./examples/Test20.jpg", 0, "mm"],
["./examples/Test21.jpg", 0, "mm"],
["./examples/Test22.jpg", 0, "mm"],
["./examples/Test23.jpg", 0, "mm"],
],
inputs=[input_image, offset, offset_unit]
)
demo.launch(share=True) |