Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- api_server.py +525 -0
- scalingtestupdated.py +184 -0
- u2netp.pth +3 -0
- u2netp.py +525 -0
api_server.py
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
| 2 |
+
# from pydantic import BaseModel
|
| 3 |
+
# import numpy as np
|
| 4 |
+
# from PIL import Image
|
| 5 |
+
# import io, uuid, os, shutil, timeit
|
| 6 |
+
# from datetime import datetime
|
| 7 |
+
# from fastapi.staticfiles import StaticFiles
|
| 8 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
| 9 |
+
|
| 10 |
+
# # import your three wrappers
|
| 11 |
+
# from app import predict_simple, predict_middle, predict_full
|
| 12 |
+
|
| 13 |
+
# app = FastAPI()
|
| 14 |
+
|
| 15 |
+
# # allow CORS if needed
|
| 16 |
+
# app.add_middleware(
|
| 17 |
+
# CORSMiddleware,
|
| 18 |
+
# allow_origins=["*"],
|
| 19 |
+
# allow_methods=["*"],
|
| 20 |
+
# allow_headers=["*"],
|
| 21 |
+
# )
|
| 22 |
+
|
| 23 |
+
# BASE_URL = "https://snapanddtraceapp-988917236820.us-central1.run.app"
|
| 24 |
+
# OUTPUT_DIR = os.path.abspath("./outputs")
|
| 25 |
+
# os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 26 |
+
# app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
|
| 27 |
+
|
| 28 |
+
# UPDATES_DIR = os.path.abspath("./updates")
|
| 29 |
+
# os.makedirs(UPDATES_DIR, exist_ok=True)
|
| 30 |
+
# app.mount("/updates", StaticFiles(directory=UPDATES_DIR), name="updates")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# def save_and_build_urls(
|
| 34 |
+
# session_id: str,
|
| 35 |
+
# output_image: np.ndarray,
|
| 36 |
+
# outlines: np.ndarray,
|
| 37 |
+
# dxf_path: str,
|
| 38 |
+
# mask: np.ndarray
|
| 39 |
+
# ):
|
| 40 |
+
# """Helper to save all four artifacts and return public URLs."""
|
| 41 |
+
# request_dir = os.path.join(OUTPUT_DIR, session_id)
|
| 42 |
+
# os.makedirs(request_dir, exist_ok=True)
|
| 43 |
+
|
| 44 |
+
# # filenames
|
| 45 |
+
# out_fn = "overlay.jpg"
|
| 46 |
+
# outlines_fn = "outlines.jpg"
|
| 47 |
+
# mask_fn = "mask.jpg"
|
| 48 |
+
# current_date = datetime.now().strftime("%d-%m-%Y")
|
| 49 |
+
# dxf_fn = f"out_{current_date}_{session_id}.dxf"
|
| 50 |
+
|
| 51 |
+
# # full paths
|
| 52 |
+
# out_path = os.path.join(request_dir, out_fn)
|
| 53 |
+
# outlines_path = os.path.join(request_dir, outlines_fn)
|
| 54 |
+
# mask_path = os.path.join(request_dir, mask_fn)
|
| 55 |
+
# new_dxf_path = os.path.join(request_dir, dxf_fn)
|
| 56 |
+
|
| 57 |
+
# # save images
|
| 58 |
+
# Image.fromarray(output_image).save(out_path)
|
| 59 |
+
# Image.fromarray(outlines).save(outlines_path)
|
| 60 |
+
# Image.fromarray(mask).save(mask_path)
|
| 61 |
+
|
| 62 |
+
# # copy dx file
|
| 63 |
+
# if os.path.exists(dxf_path):
|
| 64 |
+
# shutil.copy(dxf_path, new_dxf_path)
|
| 65 |
+
# else:
|
| 66 |
+
# # fallback if your DXF generator returns bytes or string
|
| 67 |
+
# with open(new_dxf_path, "wb") as f:
|
| 68 |
+
# if isinstance(dxf_path, (bytes, bytearray)):
|
| 69 |
+
# f.write(dxf_path)
|
| 70 |
+
# else:
|
| 71 |
+
# f.write(str(dxf_path).encode("utf-8"))
|
| 72 |
+
|
| 73 |
+
# # build URLs
|
| 74 |
+
# return {
|
| 75 |
+
# "output_image_url": f"{BASE_URL}/outputs/{session_id}/{out_fn}",
|
| 76 |
+
# "outlines_url": f"{BASE_URL}/outputs/{session_id}/{outlines_fn}",
|
| 77 |
+
# "mask_url": f"{BASE_URL}/outputs/{session_id}/{mask_fn}",
|
| 78 |
+
# "dxf_url": f"{BASE_URL}/outputs/{session_id}/{dxf_fn}",
|
| 79 |
+
# }
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# @app.post("/predict1")
|
| 83 |
+
# async def predict1_api(
|
| 84 |
+
# file: UploadFile = File(...)
|
| 85 |
+
# ):
|
| 86 |
+
# """
|
| 87 |
+
# Simple predict: only image → overlay, outlines, mask, DXF
|
| 88 |
+
# """
|
| 89 |
+
# session_id = str(uuid.uuid4())
|
| 90 |
+
# try:
|
| 91 |
+
# img_bytes = await file.read()
|
| 92 |
+
# image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
| 93 |
+
# except Exception:
|
| 94 |
+
# raise HTTPException(400, "Invalid image upload")
|
| 95 |
+
|
| 96 |
+
# try:
|
| 97 |
+
# start = timeit.default_timer()
|
| 98 |
+
# out_img, outlines, dxf_path, mask = predict_simple(image)
|
| 99 |
+
# elapsed = timeit.default_timer() - start
|
| 100 |
+
# print(f"[{session_id}] predict1 in {elapsed:.2f}s")
|
| 101 |
+
|
| 102 |
+
# return save_and_build_urls(session_id, out_img, outlines, dxf_path, mask)
|
| 103 |
+
|
| 104 |
+
# except Exception as e:
|
| 105 |
+
# raise HTTPException(500, f"predict1 failed: {e}")
|
| 106 |
+
# except ReferenceBoxNotDetectedError:
|
| 107 |
+
# raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 108 |
+
# except FingerCutOverlapError:
|
| 109 |
+
# raise HTTPException(status_code=400, detail="There was an overlap with fingercuts!s Please try again to generate dxf.")
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
# @app.post("/predict2")
|
| 113 |
+
# async def predict2_api(
|
| 114 |
+
# file: UploadFile = File(...),
|
| 115 |
+
# enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
| 116 |
+
# fillet_value_mm: float = Form(...)
|
| 117 |
+
# ):
|
| 118 |
+
# """
|
| 119 |
+
# Middle predict: image + fillet toggle + fillet value → overlay, outlines, mask, DXF
|
| 120 |
+
# """
|
| 121 |
+
# session_id = str(uuid.uuid4())
|
| 122 |
+
# try:
|
| 123 |
+
# img_bytes = await file.read()
|
| 124 |
+
# image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
| 125 |
+
# except Exception:
|
| 126 |
+
# raise HTTPException(400, "Invalid image upload")
|
| 127 |
+
|
| 128 |
+
# try:
|
| 129 |
+
# start = timeit.default_timer()
|
| 130 |
+
# out_img, outlines, dxf_path, mask = predict_middle(
|
| 131 |
+
# image, enable_fillet, fillet_value_mm
|
| 132 |
+
# )
|
| 133 |
+
# elapsed = timeit.default_timer() - start
|
| 134 |
+
# print(f"[{session_id}] predict2 in {elapsed:.2f}s")
|
| 135 |
+
|
| 136 |
+
# return save_and_build_urls(session_id, out_img, outlines, dxf_path, mask)
|
| 137 |
+
|
| 138 |
+
# except Exception as e:
|
| 139 |
+
# raise HTTPException(500, f"predict2 failed: {e}")
|
| 140 |
+
# except ReferenceBoxNotDetectedError:
|
| 141 |
+
# raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 142 |
+
# except FingerCutOverlapError:
|
| 143 |
+
# raise HTTPException(status_code=400, detail="There was an overlap with fingercuts!s Please try again to generate dxf.")
|
| 144 |
+
|
| 145 |
+
# @app.post("/predict3")
|
| 146 |
+
# async def predict3_api(
|
| 147 |
+
# file: UploadFile = File(...),
|
| 148 |
+
# enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
| 149 |
+
# fillet_value_mm: float = Form(...),
|
| 150 |
+
# enable_finger_cut: str = Form(..., regex="^(On|Off)$")
|
| 151 |
+
# ):
|
| 152 |
+
# """
|
| 153 |
+
# Full predict: image + fillet toggle/value + finger-cut toggle → overlay, outlines, mask, DXF
|
| 154 |
+
# """
|
| 155 |
+
# session_id = str(uuid.uuid4())
|
| 156 |
+
# try:
|
| 157 |
+
# img_bytes = await file.read()
|
| 158 |
+
# image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
| 159 |
+
# except Exception:
|
| 160 |
+
# raise HTTPException(400, "Invalid image upload")
|
| 161 |
+
|
| 162 |
+
# try:
|
| 163 |
+
# start = timeit.default_timer()
|
| 164 |
+
# out_img, outlines, dxf_path, mask = predict_full(
|
| 165 |
+
# image, enable_fillet, fillet_value_mm, enable_finger_cut
|
| 166 |
+
# )
|
| 167 |
+
# elapsed = timeit.default_timer() - start
|
| 168 |
+
# print(f"[{session_id}] predict3 in {elapsed:.2f}s")
|
| 169 |
+
|
| 170 |
+
# return save_and_build_urls(session_id, out_img, outlines, dxf_path, mask)
|
| 171 |
+
|
| 172 |
+
# except Exception as e:
|
| 173 |
+
# raise HTTPException(500, f"predict3 failed: {e}")
|
| 174 |
+
# except ReferenceBoxNotDetectedError:
|
| 175 |
+
# raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 176 |
+
# except FingerCutOverlapError:
|
| 177 |
+
# raise HTTPException(status_code=400, detail="There was an overlap with fingercuts!s Please try again to generate dxf.")
|
| 178 |
+
|
| 179 |
+
# @app.post("/update")
|
| 180 |
+
# async def update_files(
|
| 181 |
+
# output_image: UploadFile = File(...),
|
| 182 |
+
# outlines_image: UploadFile = File(...),
|
| 183 |
+
# mask_image: UploadFile = File(...),
|
| 184 |
+
# dxf_file: UploadFile = File(...)
|
| 185 |
+
# ):
|
| 186 |
+
# session_id = str(uuid.uuid4())
|
| 187 |
+
# update_dir = os.path.join(UPDATES_DIR, session_id)
|
| 188 |
+
# os.makedirs(update_dir, exist_ok=True)
|
| 189 |
+
|
| 190 |
+
# try:
|
| 191 |
+
# upload_map = {
|
| 192 |
+
# "output_image": output_image,
|
| 193 |
+
# "outlines_image": outlines_image,
|
| 194 |
+
# "mask_image": mask_image,
|
| 195 |
+
# "dxf_file": dxf_file,
|
| 196 |
+
# }
|
| 197 |
+
# urls = {}
|
| 198 |
+
# for key, up in upload_map.items():
|
| 199 |
+
# fn = up.filename
|
| 200 |
+
# path = os.path.join(update_dir, fn)
|
| 201 |
+
# with open(path, "wb") as f:
|
| 202 |
+
# shutil.copyfileobj(up.file, f)
|
| 203 |
+
# urls[key] = f"{BASE_URL}/updates/{session_id}/{fn}"
|
| 204 |
+
|
| 205 |
+
# return {"session_id": session_id, "uploaded": urls}
|
| 206 |
+
|
| 207 |
+
# except Exception as e:
|
| 208 |
+
# raise HTTPException(500, f"Update failed: {e}")
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# if __name__ == "__main__":
|
| 212 |
+
# import uvicorn
|
| 213 |
+
# port = int(os.environ.get("PORT", 8082))
|
| 214 |
+
# print(f"Starting FastAPI server on 0.0.0.0:{port}...")
|
| 215 |
+
# uvicorn.run(app, host="0.0.0.0", port=port)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
| 227 |
+
from pydantic import BaseModel
|
| 228 |
+
import numpy as np
|
| 229 |
+
from PIL import Image
|
| 230 |
+
import io, uuid, os, shutil, timeit
|
| 231 |
+
from datetime import datetime
|
| 232 |
+
from fastapi.staticfiles import StaticFiles
|
| 233 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 234 |
+
from fastapi.responses import FileResponse
|
| 235 |
+
|
| 236 |
+
# import your three wrappers
|
| 237 |
+
from app import predict_simple, predict_middle, predict_full
|
| 238 |
+
|
| 239 |
+
from app import (
|
| 240 |
+
predict_simple, predict_middle, predict_full,
|
| 241 |
+
ReferenceBoxNotDetectedError,
|
| 242 |
+
FingerCutOverlapError
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
app = FastAPI()
|
| 247 |
+
|
| 248 |
+
# allow CORS if needed
|
| 249 |
+
app.add_middleware(
|
| 250 |
+
CORSMiddleware,
|
| 251 |
+
allow_origins=["*"],
|
| 252 |
+
allow_methods=["*"],
|
| 253 |
+
allow_headers=["*"],
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
BASE_URL = "https://snapanddtraceapp-988917236820.us-central1.run.app"
|
| 257 |
+
|
| 258 |
+
OUTPUT_DIR = os.path.abspath("./outputs")
|
| 259 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 260 |
+
|
| 261 |
+
UPDATES_DIR = os.path.abspath("./updates")
|
| 262 |
+
os.makedirs(UPDATES_DIR, exist_ok=True)
|
| 263 |
+
|
| 264 |
+
# Mount static directories with normal StaticFiles
|
| 265 |
+
app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
|
| 266 |
+
app.mount("/updates", StaticFiles(directory=UPDATES_DIR), name="updates")
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def save_and_build_urls(
|
| 270 |
+
session_id: str,
|
| 271 |
+
output_image: np.ndarray,
|
| 272 |
+
outlines: np.ndarray,
|
| 273 |
+
dxf_path: str,
|
| 274 |
+
mask: np.ndarray,
|
| 275 |
+
endpoint_type: str,
|
| 276 |
+
fillet_value: float = None,
|
| 277 |
+
finger_cut: str = None
|
| 278 |
+
):
|
| 279 |
+
"""Helper to save all four artifacts and return public URLs."""
|
| 280 |
+
request_dir = os.path.join(OUTPUT_DIR, session_id)
|
| 281 |
+
os.makedirs(request_dir, exist_ok=True)
|
| 282 |
+
|
| 283 |
+
# filenames
|
| 284 |
+
out_fn = "overlay.jpg"
|
| 285 |
+
outlines_fn = "outlines.jpg"
|
| 286 |
+
mask_fn = "mask.jpg"
|
| 287 |
+
|
| 288 |
+
# Get current date
|
| 289 |
+
current_date = datetime.utcnow().strftime("%d-%m-%Y")
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
# Format fillet value with underscore instead of dot
|
| 293 |
+
fillet_str = f"{fillet_value:.2f}".replace(".", "_") if fillet_value is not None else None
|
| 294 |
+
|
| 295 |
+
# Determine DXF filename based on endpoint type
|
| 296 |
+
if endpoint_type == "predict1":
|
| 297 |
+
dxf_fn = f"DXF_{current_date}.dxf"
|
| 298 |
+
elif endpoint_type == "predict2":
|
| 299 |
+
dxf_fn = f"DXF_{current_date}.dxf"
|
| 300 |
+
elif endpoint_type == "predict3":
|
| 301 |
+
dxf_fn = f"DXF_{current_date}.dxf"
|
| 302 |
+
|
| 303 |
+
# full paths
|
| 304 |
+
out_path = os.path.join(request_dir, out_fn)
|
| 305 |
+
outlines_path = os.path.join(request_dir, outlines_fn)
|
| 306 |
+
mask_path = os.path.join(request_dir, mask_fn)
|
| 307 |
+
new_dxf_path = os.path.join(request_dir, dxf_fn)
|
| 308 |
+
|
| 309 |
+
# save images
|
| 310 |
+
Image.fromarray(output_image).save(out_path)
|
| 311 |
+
Image.fromarray(outlines).save(outlines_path)
|
| 312 |
+
Image.fromarray(mask).save(mask_path)
|
| 313 |
+
|
| 314 |
+
# copy dxf file
|
| 315 |
+
if os.path.exists(dxf_path):
|
| 316 |
+
shutil.copy(dxf_path, new_dxf_path)
|
| 317 |
+
else:
|
| 318 |
+
# fallback if your DXF generator returns bytes or string
|
| 319 |
+
with open(new_dxf_path, "wb") as f:
|
| 320 |
+
if isinstance(dxf_path, (bytes, bytearray)):
|
| 321 |
+
f.write(dxf_path)
|
| 322 |
+
else:
|
| 323 |
+
f.write(str(dxf_path).encode("utf-8"))
|
| 324 |
+
|
| 325 |
+
# build URLs with /download prefix for DXF
|
| 326 |
+
return {
|
| 327 |
+
"output_image_url": f"{BASE_URL}/outputs/{session_id}/{out_fn}",
|
| 328 |
+
"outlines_url": f"{BASE_URL}/outputs/{session_id}/{outlines_fn}",
|
| 329 |
+
"mask_url": f"{BASE_URL}/outputs/{session_id}/{mask_fn}",
|
| 330 |
+
"dxf_url": f"{BASE_URL}/download/{session_id}/{dxf_fn}", # Changed to use download endpoint
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
# Add new endpoint for downloading DXF files
|
| 334 |
+
@app.get("/download/{session_id}/{filename}")
|
| 335 |
+
async def download_file(session_id: str, filename: str):
|
| 336 |
+
file_path = os.path.join(OUTPUT_DIR, session_id, filename)
|
| 337 |
+
if not os.path.exists(file_path):
|
| 338 |
+
raise HTTPException(status_code=404, detail="File not found")
|
| 339 |
+
|
| 340 |
+
return FileResponse(
|
| 341 |
+
path=file_path,
|
| 342 |
+
filename=filename,
|
| 343 |
+
media_type="application/x-dxf",
|
| 344 |
+
headers={"Content-Disposition": f"attachment; filename={filename}"}
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
@app.post("/predict1")
|
| 349 |
+
async def predict1_api(
|
| 350 |
+
file: UploadFile = File(...)
|
| 351 |
+
):
|
| 352 |
+
"""
|
| 353 |
+
Simple predict: only image → overlay, outlines, mask, DXF
|
| 354 |
+
DXF naming format: DXF_DD-MM-YYYY.dxf
|
| 355 |
+
"""
|
| 356 |
+
session_id = str(uuid.uuid4())
|
| 357 |
+
try:
|
| 358 |
+
img_bytes = await file.read()
|
| 359 |
+
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
| 360 |
+
except Exception:
|
| 361 |
+
raise HTTPException(400, "Invalid image upload")
|
| 362 |
+
|
| 363 |
+
try:
|
| 364 |
+
start = timeit.default_timer()
|
| 365 |
+
out_img, outlines, dxf_path, mask = predict_simple(image)
|
| 366 |
+
elapsed = timeit.default_timer() - start
|
| 367 |
+
print(f"[{session_id}] predict1 in {elapsed:.2f}s")
|
| 368 |
+
|
| 369 |
+
return save_and_build_urls(
|
| 370 |
+
session_id=session_id,
|
| 371 |
+
output_image=out_img,
|
| 372 |
+
outlines=outlines,
|
| 373 |
+
dxf_path=dxf_path,
|
| 374 |
+
mask=mask,
|
| 375 |
+
endpoint_type="predict1"
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
except ReferenceBoxNotDetectedError:
|
| 379 |
+
raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 380 |
+
except FingerCutOverlapError:
|
| 381 |
+
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
|
| 382 |
+
except HTTPException as e:
|
| 383 |
+
raise e
|
| 384 |
+
except Exception as e:
|
| 385 |
+
raise HTTPException(status_code=500, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 386 |
+
|
| 387 |
+
@app.post("/predict2")
|
| 388 |
+
async def predict2_api(
|
| 389 |
+
file: UploadFile = File(...),
|
| 390 |
+
enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
| 391 |
+
fillet_value_mm: float = Form(...)
|
| 392 |
+
):
|
| 393 |
+
"""
|
| 394 |
+
Middle predict: image + fillet toggle + fillet value → overlay, outlines, mask, DXF
|
| 395 |
+
DXF naming format: DXF_DD-MM-YYYY_fillet-value_mm.dxf
|
| 396 |
+
"""
|
| 397 |
+
session_id = str(uuid.uuid4())
|
| 398 |
+
try:
|
| 399 |
+
img_bytes = await file.read()
|
| 400 |
+
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
| 401 |
+
except Exception:
|
| 402 |
+
raise HTTPException(400, "Invalid image upload")
|
| 403 |
+
|
| 404 |
+
try:
|
| 405 |
+
start = timeit.default_timer()
|
| 406 |
+
out_img, outlines, dxf_path, mask = predict_middle(
|
| 407 |
+
image, enable_fillet, fillet_value_mm
|
| 408 |
+
)
|
| 409 |
+
elapsed = timeit.default_timer() - start
|
| 410 |
+
print(f"[{session_id}] predict2 in {elapsed:.2f}s")
|
| 411 |
+
|
| 412 |
+
return save_and_build_urls(
|
| 413 |
+
session_id=session_id,
|
| 414 |
+
output_image=out_img,
|
| 415 |
+
outlines=outlines,
|
| 416 |
+
dxf_path=dxf_path,
|
| 417 |
+
mask=mask,
|
| 418 |
+
endpoint_type="predict2",
|
| 419 |
+
fillet_value=fillet_value_mm
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
except ReferenceBoxNotDetectedError:
|
| 423 |
+
raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 424 |
+
except FingerCutOverlapError:
|
| 425 |
+
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
|
| 426 |
+
except HTTPException as e:
|
| 427 |
+
raise e
|
| 428 |
+
except Exception as e:
|
| 429 |
+
raise HTTPException(status_code=500, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
@app.post("/predict3")
|
| 433 |
+
async def predict3_api(
|
| 434 |
+
file: UploadFile = File(...),
|
| 435 |
+
enable_fillet: str = Form(..., regex="^(On|Off)$"),
|
| 436 |
+
fillet_value_mm: float = Form(...),
|
| 437 |
+
enable_finger_cut: str = Form(..., regex="^(On|Off)$")
|
| 438 |
+
):
|
| 439 |
+
"""
|
| 440 |
+
Full predict: image + fillet toggle/value + finger-cut toggle → overlay, outlines, mask, DXF
|
| 441 |
+
DXF naming format: DXF_DD-MM-YYYY_fillet-value_mm_fingercut-On|Off.dxf
|
| 442 |
+
"""
|
| 443 |
+
session_id = str(uuid.uuid4())
|
| 444 |
+
try:
|
| 445 |
+
img_bytes = await file.read()
|
| 446 |
+
image = np.array(Image.open(io.BytesIO(img_bytes)).convert("RGB"))
|
| 447 |
+
except Exception:
|
| 448 |
+
raise HTTPException(400, "Invalid image upload")
|
| 449 |
+
|
| 450 |
+
try:
|
| 451 |
+
start = timeit.default_timer()
|
| 452 |
+
out_img, outlines, dxf_path, mask = predict_full(
|
| 453 |
+
image, enable_fillet, fillet_value_mm, enable_finger_cut
|
| 454 |
+
)
|
| 455 |
+
elapsed = timeit.default_timer() - start
|
| 456 |
+
print(f"[{session_id}] predict3 in {elapsed:.2f}s")
|
| 457 |
+
|
| 458 |
+
return save_and_build_urls(
|
| 459 |
+
session_id=session_id,
|
| 460 |
+
output_image=out_img,
|
| 461 |
+
outlines=outlines,
|
| 462 |
+
dxf_path=dxf_path,
|
| 463 |
+
mask=mask,
|
| 464 |
+
endpoint_type="predict3",
|
| 465 |
+
fillet_value=fillet_value_mm,
|
| 466 |
+
finger_cut=enable_finger_cut
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
except ReferenceBoxNotDetectedError:
|
| 470 |
+
raise HTTPException(status_code=400, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 471 |
+
except FingerCutOverlapError:
|
| 472 |
+
raise HTTPException(status_code=400, detail="There was an overlap with fingercuts! Please try again to generate dxf.")
|
| 473 |
+
except HTTPException as e:
|
| 474 |
+
raise e
|
| 475 |
+
except Exception as e:
|
| 476 |
+
raise HTTPException(status_code=500, detail="Error detecting reference battery! Please try again with a clearer image.")
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
@app.post("/update")
|
| 480 |
+
async def update_files(
|
| 481 |
+
output_image: UploadFile = File(...),
|
| 482 |
+
outlines_image: UploadFile = File(...),
|
| 483 |
+
mask_image: UploadFile = File(...),
|
| 484 |
+
dxf_file: UploadFile = File(...)
|
| 485 |
+
):
|
| 486 |
+
session_id = str(uuid.uuid4())
|
| 487 |
+
update_dir = os.path.join(UPDATES_DIR, session_id)
|
| 488 |
+
os.makedirs(update_dir, exist_ok=True)
|
| 489 |
+
|
| 490 |
+
try:
|
| 491 |
+
upload_map = {
|
| 492 |
+
"output_image": output_image,
|
| 493 |
+
"outlines_image": outlines_image,
|
| 494 |
+
"mask_image": mask_image,
|
| 495 |
+
"dxf_file": dxf_file,
|
| 496 |
+
}
|
| 497 |
+
urls = {}
|
| 498 |
+
for key, up in upload_map.items():
|
| 499 |
+
fn = up.filename
|
| 500 |
+
path = os.path.join(update_dir, fn)
|
| 501 |
+
with open(path, "wb") as f:
|
| 502 |
+
shutil.copyfileobj(up.file, f)
|
| 503 |
+
urls[key] = f"{BASE_URL}/updates/{session_id}/{fn}"
|
| 504 |
+
|
| 505 |
+
return {"session_id": session_id, "uploaded": urls}
|
| 506 |
+
|
| 507 |
+
except Exception as e:
|
| 508 |
+
raise HTTPException(500, f"Update failed: {e}")
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
from fastapi import Response
|
| 512 |
+
|
| 513 |
+
@app.get("/health")
|
| 514 |
+
def health():
|
| 515 |
+
return Response(content="OK", status_code=200)
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
if __name__ == "__main__":
|
| 519 |
+
import uvicorn
|
| 520 |
+
port = int(os.environ.get("PORT", 8080))
|
| 521 |
+
print(f"Starting FastAPI server on 0.0.0.0:{port}...")
|
| 522 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
|
scalingtestupdated.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
import argparse
|
| 5 |
+
from typing import Union
|
| 6 |
+
from matplotlib import pyplot as plt
|
| 7 |
+
|
| 8 |
+
class ScalingSquareDetector:
|
| 9 |
+
def __init__(self, feature_detector="ORB", debug=False):
|
| 10 |
+
"""
|
| 11 |
+
Initialize the detector with the desired feature matching algorithm.
|
| 12 |
+
:param feature_detector: "ORB" or "SIFT" (default is "ORB").
|
| 13 |
+
:param debug: If True, saves intermediate images for debugging.
|
| 14 |
+
"""
|
| 15 |
+
self.feature_detector = feature_detector
|
| 16 |
+
self.debug = debug
|
| 17 |
+
self.detector = self._initialize_detector()
|
| 18 |
+
|
| 19 |
+
def _initialize_detector(self):
|
| 20 |
+
"""
|
| 21 |
+
Initialize the chosen feature detector.
|
| 22 |
+
:return: OpenCV detector object.
|
| 23 |
+
"""
|
| 24 |
+
if self.feature_detector.upper() == "SIFT":
|
| 25 |
+
return cv2.SIFT_create()
|
| 26 |
+
elif self.feature_detector.upper() == "ORB":
|
| 27 |
+
return cv2.ORB_create()
|
| 28 |
+
else:
|
| 29 |
+
raise ValueError("Invalid feature detector. Choose 'ORB' or 'SIFT'.")
|
| 30 |
+
|
| 31 |
+
def find_scaling_square(
|
| 32 |
+
self, target_image, known_size_mm, roi_margin=30
|
| 33 |
+
):
|
| 34 |
+
"""
|
| 35 |
+
Detect the scaling square in the target image based on the reference image.
|
| 36 |
+
:param reference_image_path: Path to the reference image of the square.
|
| 37 |
+
:param target_image_path: Path to the target image containing the square.
|
| 38 |
+
:param known_size_mm: Physical size of the square in millimeters.
|
| 39 |
+
:param roi_margin: Margin to expand the ROI around the detected square (in pixels).
|
| 40 |
+
:return: Scaling factor (mm per pixel).
|
| 41 |
+
"""
|
| 42 |
+
contours, _ = cv2.findContours(
|
| 43 |
+
target_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
if not contours:
|
| 47 |
+
raise ValueError("No contours found in the cropped ROI.")
|
| 48 |
+
|
| 49 |
+
# # Select the largest square-like contour
|
| 50 |
+
print(f"No of contours: {len(contours)}")
|
| 51 |
+
largest_square = None
|
| 52 |
+
# largest_square_area = 0
|
| 53 |
+
# for contour in contours:
|
| 54 |
+
# x_c, y_c, w_c, h_c = cv2.boundingRect(contour)
|
| 55 |
+
# aspect_ratio = w_c / float(h_c)
|
| 56 |
+
# if 0.9 <= aspect_ratio <= 1.1:
|
| 57 |
+
# peri = cv2.arcLength(contour, True)
|
| 58 |
+
# approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
|
| 59 |
+
# if len(approx) == 4:
|
| 60 |
+
# area = cv2.contourArea(contour)
|
| 61 |
+
# if area > largest_square_area:
|
| 62 |
+
# largest_square = contour
|
| 63 |
+
# largest_square_area = area
|
| 64 |
+
|
| 65 |
+
for contour in contours:
|
| 66 |
+
largest_square = contour
|
| 67 |
+
|
| 68 |
+
# if largest_square is None:
|
| 69 |
+
# raise ValueError("No square-like contour found in the ROI.")
|
| 70 |
+
|
| 71 |
+
# Draw the largest contour on the original image
|
| 72 |
+
target_image_color = cv2.cvtColor(target_image, cv2.COLOR_GRAY2BGR)
|
| 73 |
+
cv2.drawContours(
|
| 74 |
+
target_image_color, largest_square, -1, (255, 0, 0), 3
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# if self.debug:
|
| 78 |
+
cv2.imwrite("largest_contour.jpg", target_image_color)
|
| 79 |
+
|
| 80 |
+
# Calculate the bounding rectangle of the largest contour
|
| 81 |
+
x, y, w, h = cv2.boundingRect(largest_square)
|
| 82 |
+
square_width_px = w
|
| 83 |
+
square_height_px = h
|
| 84 |
+
print(f"Reference object size: {known_size_mm} mm")
|
| 85 |
+
print(f"width: {square_width_px} px")
|
| 86 |
+
print(f"height: {square_height_px} px")
|
| 87 |
+
|
| 88 |
+
# Calculate the scaling factor
|
| 89 |
+
avg_square_size_px = (square_width_px + square_height_px) / 2
|
| 90 |
+
print(f"avg square size: {avg_square_size_px} px")
|
| 91 |
+
scaling_factor = known_size_mm / avg_square_size_px # mm per pixel
|
| 92 |
+
print(f"scaling factor: {scaling_factor} mm per pixel")
|
| 93 |
+
|
| 94 |
+
return scaling_factor #, square_height_px, square_width_px, roi_binary
|
| 95 |
+
|
| 96 |
+
def draw_debug_images(self, output_folder):
|
| 97 |
+
"""
|
| 98 |
+
Save debug images if enabled.
|
| 99 |
+
:param output_folder: Directory to save debug images.
|
| 100 |
+
"""
|
| 101 |
+
if self.debug:
|
| 102 |
+
if not os.path.exists(output_folder):
|
| 103 |
+
os.makedirs(output_folder)
|
| 104 |
+
debug_images = ["largest_contour.jpg"]
|
| 105 |
+
for img_name in debug_images:
|
| 106 |
+
if os.path.exists(img_name):
|
| 107 |
+
os.rename(img_name, os.path.join(output_folder, img_name))
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def calculate_scaling_factor(
|
| 111 |
+
target_image,
|
| 112 |
+
reference_obj_size_mm,
|
| 113 |
+
feature_detector="ORB",
|
| 114 |
+
debug=False,
|
| 115 |
+
roi_margin=30,
|
| 116 |
+
):
|
| 117 |
+
# Initialize detector
|
| 118 |
+
detector = ScalingSquareDetector(feature_detector=feature_detector, debug=debug)
|
| 119 |
+
|
| 120 |
+
# Find scaling square and calculate scaling factor
|
| 121 |
+
scaling_factor = detector.find_scaling_square(
|
| 122 |
+
target_image=target_image,
|
| 123 |
+
known_size_mm=reference_obj_size_mm,
|
| 124 |
+
roi_margin=roi_margin,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Save debug images
|
| 128 |
+
if debug:
|
| 129 |
+
detector.draw_debug_images("debug_outputs")
|
| 130 |
+
|
| 131 |
+
return scaling_factor
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
# Example usage:
|
| 135 |
+
if __name__ == "__main__":
|
| 136 |
+
import os
|
| 137 |
+
from PIL import Image
|
| 138 |
+
from ultralytics import YOLO
|
| 139 |
+
from app import yolo_detect, shrink_bbox
|
| 140 |
+
from ultralytics.utils.plotting import save_one_box
|
| 141 |
+
|
| 142 |
+
for idx, file in enumerate(os.listdir("./sample_images")):
|
| 143 |
+
img = np.array(Image.open(os.path.join("./sample_images", file)))
|
| 144 |
+
img = yolo_detect(img, ['box'])
|
| 145 |
+
model = YOLO("./best.pt")
|
| 146 |
+
res = model.predict(img, conf=0.6)
|
| 147 |
+
|
| 148 |
+
box_img = save_one_box(res[0].cpu().boxes.xyxy, im=res[0].orig_img, save=False)
|
| 149 |
+
# img = shrink_bbox(box_img, 1.20)
|
| 150 |
+
cv2.imwrite(f"./outputs/{idx}_{file}", box_img)
|
| 151 |
+
|
| 152 |
+
print("File: ",f"./outputs/{idx}_{file}")
|
| 153 |
+
try:
|
| 154 |
+
|
| 155 |
+
scaling_factor = calculate_scaling_factor(
|
| 156 |
+
target_image=box_img,
|
| 157 |
+
known_square_size_mm=20,
|
| 158 |
+
feature_detector="ORB",
|
| 159 |
+
debug=False,
|
| 160 |
+
roi_margin=90,
|
| 161 |
+
)
|
| 162 |
+
# cv2.imwrite(f"./outputs/{idx}_binary_{file}", roi_binary)
|
| 163 |
+
|
| 164 |
+
# Square size in mm
|
| 165 |
+
# square_size_mm = 12.7
|
| 166 |
+
|
| 167 |
+
# # Compute the calculated scaling factors and compare
|
| 168 |
+
# calculated_scaling_factor = square_size_mm / height_px
|
| 169 |
+
# discrepancy = abs(calculated_scaling_factor - scaling_factor)
|
| 170 |
+
# import pprint
|
| 171 |
+
# pprint.pprint({
|
| 172 |
+
# "height_px": height_px,
|
| 173 |
+
# "width_px": width_px,
|
| 174 |
+
# "given_scaling_factor": scaling_factor,
|
| 175 |
+
# "calculated_scaling_factor": calculated_scaling_factor,
|
| 176 |
+
# "discrepancy": discrepancy,
|
| 177 |
+
# })
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
print(f"Scaling Factor (mm per pixel): {scaling_factor:.6f}")
|
| 181 |
+
except Exception as e:
|
| 182 |
+
from traceback import print_exc
|
| 183 |
+
print(print_exc())
|
| 184 |
+
print(f"Error: {e}")
|
u2netp.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7567cde013fb64813973ce6e1ecc25a80c05c3ca7adbc5a54f3c3d90991b854
|
| 3 |
+
size 4683258
|
u2netp.py
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class REBNCONV(nn.Module):
|
| 6 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1):
|
| 7 |
+
super(REBNCONV,self).__init__()
|
| 8 |
+
|
| 9 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
|
| 10 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
| 11 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
| 12 |
+
|
| 13 |
+
def forward(self,x):
|
| 14 |
+
|
| 15 |
+
hx = x
|
| 16 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
| 17 |
+
|
| 18 |
+
return xout
|
| 19 |
+
|
| 20 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
| 21 |
+
def _upsample_like(src,tar):
|
| 22 |
+
|
| 23 |
+
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
| 24 |
+
|
| 25 |
+
return src
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
### RSU-7 ###
|
| 29 |
+
class RSU7(nn.Module):#UNet07DRES(nn.Module):
|
| 30 |
+
|
| 31 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 32 |
+
super(RSU7,self).__init__()
|
| 33 |
+
|
| 34 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 35 |
+
|
| 36 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 37 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 38 |
+
|
| 39 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 40 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 41 |
+
|
| 42 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 43 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 44 |
+
|
| 45 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 46 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 47 |
+
|
| 48 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 49 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 50 |
+
|
| 51 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 52 |
+
|
| 53 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 54 |
+
|
| 55 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 56 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 57 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 58 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 59 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 60 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 61 |
+
|
| 62 |
+
def forward(self,x):
|
| 63 |
+
|
| 64 |
+
hx = x
|
| 65 |
+
hxin = self.rebnconvin(hx)
|
| 66 |
+
|
| 67 |
+
hx1 = self.rebnconv1(hxin)
|
| 68 |
+
hx = self.pool1(hx1)
|
| 69 |
+
|
| 70 |
+
hx2 = self.rebnconv2(hx)
|
| 71 |
+
hx = self.pool2(hx2)
|
| 72 |
+
|
| 73 |
+
hx3 = self.rebnconv3(hx)
|
| 74 |
+
hx = self.pool3(hx3)
|
| 75 |
+
|
| 76 |
+
hx4 = self.rebnconv4(hx)
|
| 77 |
+
hx = self.pool4(hx4)
|
| 78 |
+
|
| 79 |
+
hx5 = self.rebnconv5(hx)
|
| 80 |
+
hx = self.pool5(hx5)
|
| 81 |
+
|
| 82 |
+
hx6 = self.rebnconv6(hx)
|
| 83 |
+
|
| 84 |
+
hx7 = self.rebnconv7(hx6)
|
| 85 |
+
|
| 86 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
| 87 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
| 88 |
+
|
| 89 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
| 90 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 91 |
+
|
| 92 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 93 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 94 |
+
|
| 95 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 96 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 97 |
+
|
| 98 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 99 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 100 |
+
|
| 101 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 102 |
+
|
| 103 |
+
return hx1d + hxin
|
| 104 |
+
|
| 105 |
+
### RSU-6 ###
|
| 106 |
+
class RSU6(nn.Module):#UNet06DRES(nn.Module):
|
| 107 |
+
|
| 108 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 109 |
+
super(RSU6,self).__init__()
|
| 110 |
+
|
| 111 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 112 |
+
|
| 113 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 114 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 115 |
+
|
| 116 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 117 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 118 |
+
|
| 119 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 120 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 121 |
+
|
| 122 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 123 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 124 |
+
|
| 125 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 126 |
+
|
| 127 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 128 |
+
|
| 129 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 130 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 131 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 132 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 133 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 134 |
+
|
| 135 |
+
def forward(self,x):
|
| 136 |
+
|
| 137 |
+
hx = x
|
| 138 |
+
|
| 139 |
+
hxin = self.rebnconvin(hx)
|
| 140 |
+
|
| 141 |
+
hx1 = self.rebnconv1(hxin)
|
| 142 |
+
hx = self.pool1(hx1)
|
| 143 |
+
|
| 144 |
+
hx2 = self.rebnconv2(hx)
|
| 145 |
+
hx = self.pool2(hx2)
|
| 146 |
+
|
| 147 |
+
hx3 = self.rebnconv3(hx)
|
| 148 |
+
hx = self.pool3(hx3)
|
| 149 |
+
|
| 150 |
+
hx4 = self.rebnconv4(hx)
|
| 151 |
+
hx = self.pool4(hx4)
|
| 152 |
+
|
| 153 |
+
hx5 = self.rebnconv5(hx)
|
| 154 |
+
|
| 155 |
+
hx6 = self.rebnconv6(hx5)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
| 159 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 160 |
+
|
| 161 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 162 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 163 |
+
|
| 164 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 165 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 166 |
+
|
| 167 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 168 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 169 |
+
|
| 170 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 171 |
+
|
| 172 |
+
return hx1d + hxin
|
| 173 |
+
|
| 174 |
+
### RSU-5 ###
|
| 175 |
+
class RSU5(nn.Module):#UNet05DRES(nn.Module):
|
| 176 |
+
|
| 177 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 178 |
+
super(RSU5,self).__init__()
|
| 179 |
+
|
| 180 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 181 |
+
|
| 182 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 183 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 184 |
+
|
| 185 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 186 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 187 |
+
|
| 188 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 189 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 190 |
+
|
| 191 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 192 |
+
|
| 193 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 194 |
+
|
| 195 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 196 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 197 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 198 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 199 |
+
|
| 200 |
+
def forward(self,x):
|
| 201 |
+
|
| 202 |
+
hx = x
|
| 203 |
+
|
| 204 |
+
hxin = self.rebnconvin(hx)
|
| 205 |
+
|
| 206 |
+
hx1 = self.rebnconv1(hxin)
|
| 207 |
+
hx = self.pool1(hx1)
|
| 208 |
+
|
| 209 |
+
hx2 = self.rebnconv2(hx)
|
| 210 |
+
hx = self.pool2(hx2)
|
| 211 |
+
|
| 212 |
+
hx3 = self.rebnconv3(hx)
|
| 213 |
+
hx = self.pool3(hx3)
|
| 214 |
+
|
| 215 |
+
hx4 = self.rebnconv4(hx)
|
| 216 |
+
|
| 217 |
+
hx5 = self.rebnconv5(hx4)
|
| 218 |
+
|
| 219 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
| 220 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 221 |
+
|
| 222 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 223 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 224 |
+
|
| 225 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 226 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 227 |
+
|
| 228 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 229 |
+
|
| 230 |
+
return hx1d + hxin
|
| 231 |
+
|
| 232 |
+
### RSU-4 ###
|
| 233 |
+
class RSU4(nn.Module):#UNet04DRES(nn.Module):
|
| 234 |
+
|
| 235 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 236 |
+
super(RSU4,self).__init__()
|
| 237 |
+
|
| 238 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 239 |
+
|
| 240 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 241 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 242 |
+
|
| 243 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 244 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 245 |
+
|
| 246 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 247 |
+
|
| 248 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 249 |
+
|
| 250 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 251 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 252 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 253 |
+
|
| 254 |
+
def forward(self,x):
|
| 255 |
+
|
| 256 |
+
hx = x
|
| 257 |
+
|
| 258 |
+
hxin = self.rebnconvin(hx)
|
| 259 |
+
|
| 260 |
+
hx1 = self.rebnconv1(hxin)
|
| 261 |
+
hx = self.pool1(hx1)
|
| 262 |
+
|
| 263 |
+
hx2 = self.rebnconv2(hx)
|
| 264 |
+
hx = self.pool2(hx2)
|
| 265 |
+
|
| 266 |
+
hx3 = self.rebnconv3(hx)
|
| 267 |
+
|
| 268 |
+
hx4 = self.rebnconv4(hx3)
|
| 269 |
+
|
| 270 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 271 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 272 |
+
|
| 273 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 274 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 275 |
+
|
| 276 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 277 |
+
|
| 278 |
+
return hx1d + hxin
|
| 279 |
+
|
| 280 |
+
### RSU-4F ###
|
| 281 |
+
class RSU4F(nn.Module):#UNet04FRES(nn.Module):
|
| 282 |
+
|
| 283 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 284 |
+
super(RSU4F,self).__init__()
|
| 285 |
+
|
| 286 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 287 |
+
|
| 288 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 289 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 290 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
| 291 |
+
|
| 292 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
| 293 |
+
|
| 294 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
| 295 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
| 296 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 297 |
+
|
| 298 |
+
def forward(self,x):
|
| 299 |
+
|
| 300 |
+
hx = x
|
| 301 |
+
|
| 302 |
+
hxin = self.rebnconvin(hx)
|
| 303 |
+
|
| 304 |
+
hx1 = self.rebnconv1(hxin)
|
| 305 |
+
hx2 = self.rebnconv2(hx1)
|
| 306 |
+
hx3 = self.rebnconv3(hx2)
|
| 307 |
+
|
| 308 |
+
hx4 = self.rebnconv4(hx3)
|
| 309 |
+
|
| 310 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 311 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
| 312 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
| 313 |
+
|
| 314 |
+
return hx1d + hxin
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
##### U^2-Net ####
|
| 318 |
+
class U2NET(nn.Module):
|
| 319 |
+
|
| 320 |
+
def __init__(self,in_ch=3,out_ch=1):
|
| 321 |
+
super(U2NET,self).__init__()
|
| 322 |
+
|
| 323 |
+
self.stage1 = RSU7(in_ch,32,64)
|
| 324 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 325 |
+
|
| 326 |
+
self.stage2 = RSU6(64,32,128)
|
| 327 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 328 |
+
|
| 329 |
+
self.stage3 = RSU5(128,64,256)
|
| 330 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 331 |
+
|
| 332 |
+
self.stage4 = RSU4(256,128,512)
|
| 333 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 334 |
+
|
| 335 |
+
self.stage5 = RSU4F(512,256,512)
|
| 336 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 337 |
+
|
| 338 |
+
self.stage6 = RSU4F(512,256,512)
|
| 339 |
+
|
| 340 |
+
# decoder
|
| 341 |
+
self.stage5d = RSU4F(1024,256,512)
|
| 342 |
+
self.stage4d = RSU4(1024,128,256)
|
| 343 |
+
self.stage3d = RSU5(512,64,128)
|
| 344 |
+
self.stage2d = RSU6(256,32,64)
|
| 345 |
+
self.stage1d = RSU7(128,16,64)
|
| 346 |
+
|
| 347 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 348 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 349 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
| 350 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
| 351 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 352 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 353 |
+
|
| 354 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
| 355 |
+
|
| 356 |
+
def forward(self,x):
|
| 357 |
+
|
| 358 |
+
hx = x
|
| 359 |
+
|
| 360 |
+
#stage 1
|
| 361 |
+
hx1 = self.stage1(hx)
|
| 362 |
+
hx = self.pool12(hx1)
|
| 363 |
+
|
| 364 |
+
#stage 2
|
| 365 |
+
hx2 = self.stage2(hx)
|
| 366 |
+
hx = self.pool23(hx2)
|
| 367 |
+
|
| 368 |
+
#stage 3
|
| 369 |
+
hx3 = self.stage3(hx)
|
| 370 |
+
hx = self.pool34(hx3)
|
| 371 |
+
|
| 372 |
+
#stage 4
|
| 373 |
+
hx4 = self.stage4(hx)
|
| 374 |
+
hx = self.pool45(hx4)
|
| 375 |
+
|
| 376 |
+
#stage 5
|
| 377 |
+
hx5 = self.stage5(hx)
|
| 378 |
+
hx = self.pool56(hx5)
|
| 379 |
+
|
| 380 |
+
#stage 6
|
| 381 |
+
hx6 = self.stage6(hx)
|
| 382 |
+
hx6up = _upsample_like(hx6,hx5)
|
| 383 |
+
|
| 384 |
+
#-------------------- decoder --------------------
|
| 385 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
| 386 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 387 |
+
|
| 388 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
| 389 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 390 |
+
|
| 391 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
| 392 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 393 |
+
|
| 394 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
| 395 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 396 |
+
|
| 397 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
#side output
|
| 401 |
+
d1 = self.side1(hx1d)
|
| 402 |
+
|
| 403 |
+
d2 = self.side2(hx2d)
|
| 404 |
+
d2 = _upsample_like(d2,d1)
|
| 405 |
+
|
| 406 |
+
d3 = self.side3(hx3d)
|
| 407 |
+
d3 = _upsample_like(d3,d1)
|
| 408 |
+
|
| 409 |
+
d4 = self.side4(hx4d)
|
| 410 |
+
d4 = _upsample_like(d4,d1)
|
| 411 |
+
|
| 412 |
+
d5 = self.side5(hx5d)
|
| 413 |
+
d5 = _upsample_like(d5,d1)
|
| 414 |
+
|
| 415 |
+
d6 = self.side6(hx6)
|
| 416 |
+
d6 = _upsample_like(d6,d1)
|
| 417 |
+
|
| 418 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
| 419 |
+
|
| 420 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|
| 421 |
+
|
| 422 |
+
### U^2-Net small ###
|
| 423 |
+
class U2NETP(nn.Module):
|
| 424 |
+
|
| 425 |
+
def __init__(self,in_ch=3,out_ch=1):
|
| 426 |
+
super(U2NETP,self).__init__()
|
| 427 |
+
|
| 428 |
+
self.stage1 = RSU7(in_ch,16,64)
|
| 429 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 430 |
+
|
| 431 |
+
self.stage2 = RSU6(64,16,64)
|
| 432 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 433 |
+
|
| 434 |
+
self.stage3 = RSU5(64,16,64)
|
| 435 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 436 |
+
|
| 437 |
+
self.stage4 = RSU4(64,16,64)
|
| 438 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 439 |
+
|
| 440 |
+
self.stage5 = RSU4F(64,16,64)
|
| 441 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 442 |
+
|
| 443 |
+
self.stage6 = RSU4F(64,16,64)
|
| 444 |
+
|
| 445 |
+
# decoder
|
| 446 |
+
self.stage5d = RSU4F(128,16,64)
|
| 447 |
+
self.stage4d = RSU4(128,16,64)
|
| 448 |
+
self.stage3d = RSU5(128,16,64)
|
| 449 |
+
self.stage2d = RSU6(128,16,64)
|
| 450 |
+
self.stage1d = RSU7(128,16,64)
|
| 451 |
+
|
| 452 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 453 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 454 |
+
self.side3 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 455 |
+
self.side4 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 456 |
+
self.side5 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 457 |
+
self.side6 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 458 |
+
|
| 459 |
+
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
| 460 |
+
|
| 461 |
+
def forward(self,x):
|
| 462 |
+
|
| 463 |
+
hx = x
|
| 464 |
+
|
| 465 |
+
#stage 1
|
| 466 |
+
hx1 = self.stage1(hx)
|
| 467 |
+
hx = self.pool12(hx1)
|
| 468 |
+
|
| 469 |
+
#stage 2
|
| 470 |
+
hx2 = self.stage2(hx)
|
| 471 |
+
hx = self.pool23(hx2)
|
| 472 |
+
|
| 473 |
+
#stage 3
|
| 474 |
+
hx3 = self.stage3(hx)
|
| 475 |
+
hx = self.pool34(hx3)
|
| 476 |
+
|
| 477 |
+
#stage 4
|
| 478 |
+
hx4 = self.stage4(hx)
|
| 479 |
+
hx = self.pool45(hx4)
|
| 480 |
+
|
| 481 |
+
#stage 5
|
| 482 |
+
hx5 = self.stage5(hx)
|
| 483 |
+
hx = self.pool56(hx5)
|
| 484 |
+
|
| 485 |
+
#stage 6
|
| 486 |
+
hx6 = self.stage6(hx)
|
| 487 |
+
hx6up = _upsample_like(hx6,hx5)
|
| 488 |
+
|
| 489 |
+
#decoder
|
| 490 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
| 491 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 492 |
+
|
| 493 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
| 494 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 495 |
+
|
| 496 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
| 497 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 498 |
+
|
| 499 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
| 500 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 501 |
+
|
| 502 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
#side output
|
| 506 |
+
d1 = self.side1(hx1d)
|
| 507 |
+
|
| 508 |
+
d2 = self.side2(hx2d)
|
| 509 |
+
d2 = _upsample_like(d2,d1)
|
| 510 |
+
|
| 511 |
+
d3 = self.side3(hx3d)
|
| 512 |
+
d3 = _upsample_like(d3,d1)
|
| 513 |
+
|
| 514 |
+
d4 = self.side4(hx4d)
|
| 515 |
+
d4 = _upsample_like(d4,d1)
|
| 516 |
+
|
| 517 |
+
d5 = self.side5(hx5d)
|
| 518 |
+
d5 = _upsample_like(d5,d1)
|
| 519 |
+
|
| 520 |
+
d6 = self.side6(hx6)
|
| 521 |
+
d6 = _upsample_like(d6,d1)
|
| 522 |
+
|
| 523 |
+
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
| 524 |
+
|
| 525 |
+
return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)
|