Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms
|
4 |
+
from torchvision.models import convnext_tiny
|
5 |
+
from ultralytics import YOLO
|
6 |
+
from PIL import Image
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
# ---------- 1. Class labels ----------
|
13 |
+
class_names = [
|
14 |
+
'beige', 'black', 'blue', 'brown', 'gold',
|
15 |
+
'green', 'grey', 'orange', 'pink', 'purple',
|
16 |
+
'red', 'silver', 'tan', 'white', 'yellow'
|
17 |
+
]
|
18 |
+
|
19 |
+
# ---------- 2. Load ConvNeXt-Tiny Model ----------
|
20 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
+
model = convnext_tiny(pretrained=False)
|
22 |
+
model.classifier[2] = nn.Linear(768, len(class_names))
|
23 |
+
model.load_state_dict(torch.load("convnext_best_model.pth", map_location=device))
|
24 |
+
model = model.to(device)
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
# ---------- 3. Image Transform ----------
|
28 |
+
transform = transforms.Compose([
|
29 |
+
transforms.Resize((512, 512)),
|
30 |
+
transforms.ToTensor(),
|
31 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
32 |
+
[0.229, 0.224, 0.225])
|
33 |
+
])
|
34 |
+
|
35 |
+
# ---------- 4. Load YOLOv8 Model ----------
|
36 |
+
yolo_model = YOLO("yolo11x.pt")
|
37 |
+
|
38 |
+
# ---------- Gradio Inference Function ----------
|
39 |
+
def detect_vehicle_color(input_img):
|
40 |
+
img_original = input_img.convert("RGB")
|
41 |
+
img_cv2 = cv2.cvtColor(np.array(img_original), cv2.COLOR_RGB2BGR)
|
42 |
+
|
43 |
+
results = yolo_model(img_cv2)
|
44 |
+
boxes = results[0].boxes
|
45 |
+
|
46 |
+
# Vehicle class IDs: car, motorcycle, bus, truck
|
47 |
+
vehicle_class_ids = {2, 3, 5, 7}
|
48 |
+
vehicle_boxes = [box for box in boxes if int(box.cls.item()) in vehicle_class_ids]
|
49 |
+
|
50 |
+
if len(vehicle_boxes) == 0:
|
51 |
+
return "No vehicle detected", img_original, img_original
|
52 |
+
|
53 |
+
def box_area(box):
|
54 |
+
x1, y1, x2, y2 = box.xyxy[0].tolist()
|
55 |
+
return (x2 - x1) * (y2 - y1)
|
56 |
+
|
57 |
+
largest_vehicle = max(vehicle_boxes, key=box_area)
|
58 |
+
x1, y1, x2, y2 = map(int, largest_vehicle.xyxy[0].tolist())
|
59 |
+
|
60 |
+
cropped = img_original.crop((x1, y1, x2, y2))
|
61 |
+
|
62 |
+
input_tensor = transform(cropped).unsqueeze(0).to(device)
|
63 |
+
with torch.no_grad():
|
64 |
+
output = model(input_tensor)
|
65 |
+
probs = torch.softmax(output, dim=1)[0]
|
66 |
+
pred_idx = torch.argmax(probs).item()
|
67 |
+
pred_class = class_names[pred_idx]
|
68 |
+
confidence = probs[pred_idx].item()
|
69 |
+
|
70 |
+
# Draw bounding box on original image
|
71 |
+
img_with_box = np.array(img_original).copy()
|
72 |
+
cv2.rectangle(img_with_box, (x1, y1), (x2, y2), (255, 0, 0), 3)
|
73 |
+
img_with_box_pil = Image.fromarray(img_with_box)
|
74 |
+
|
75 |
+
return f"{pred_class} ({confidence*100:.1f}%)", img_with_box_pil, cropped
|
76 |
+
|
77 |
+
# ---------- Gradio UI ----------
|
78 |
+
demo = gr.Interface(
|
79 |
+
fn=detect_vehicle_color,
|
80 |
+
inputs=gr.Image(type="pil"),
|
81 |
+
outputs=[
|
82 |
+
gr.Text(label="Predicted Vehicle Color"),
|
83 |
+
gr.Image(label="Detected Vehicle in Original"),
|
84 |
+
gr.Image(label="Cropped Vehicle Region")
|
85 |
+
],
|
86 |
+
title="🚗 Vehicle Color Detection",
|
87 |
+
description="Upload an image to detect the most prominent vehicle and its predicted color."
|
88 |
+
)
|
89 |
+
|
90 |
+
# ---------- Launch ----------
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch()
|