File size: 32,913 Bytes
22cc60c
 
 
6e3d36f
1007e19
6e3d36f
 
7b8bbf4
3dd92ec
 
 
0632403
3dd92ec
 
6e3d36f
3dd92ec
0632403
 
 
6e3d36f
 
7b8bbf4
6e3d36f
0632403
 
 
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
 
8104fa7
 
6e3d36f
 
3aab004
6e3d36f
 
 
 
 
 
 
 
b41aa3c
6e3d36f
 
 
 
 
 
 
 
 
 
3aab004
 
6e3d36f
 
 
 
 
 
 
 
 
 
 
0632403
6e3d36f
 
8104fa7
0632403
 
 
 
6e3d36f
8104fa7
 
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
 
 
8104fa7
3dd92ec
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
0632403
 
6e3d36f
 
 
 
 
 
 
8104fa7
6e3d36f
 
 
0632403
 
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
8104fa7
 
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
6e3d36f
 
 
 
 
 
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
8104fa7
 
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
6e3d36f
 
 
0632403
6e3d36f
8104fa7
6e3d36f
 
 
 
 
8104fa7
 
6e3d36f
 
 
 
8104fa7
6e3d36f
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
5d4bad7
6e3d36f
 
 
 
 
 
 
 
 
5d4bad7
6e3d36f
 
 
 
 
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8104fa7
0632403
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
0f4f58e
6e3d36f
 
 
 
 
0f4f58e
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd92ec
3aab004
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0632403
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8104fa7
 
0632403
8104fa7
6e3d36f
8104fa7
6e3d36f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8104fa7
6e3d36f
8104fa7
6e3d36f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime

# --- Make sure these imports work relative to your file structure ---
# Option 1: If src is a directory in the same folder as your script:
try:
    from src.about import (
        CITATION_BUTTON_LABEL,
        CITATION_BUTTON_TEXT,
        EVALUATION_QUEUE_TEXT,
        INTRODUCTION_TEXT,
        LLM_BENCHMARKS_TEXT,
        TITLE,
    )
    from src.display.css_html_js import custom_css
    from src.envs import REPO_ID
    from src.submission.submit import add_new_eval
    print("Successfully imported from src module.")
# Option 2: If you don't have these files, define placeholders
except ImportError:
    print("Warning: Using placeholder values because src module imports failed.")
    CITATION_BUTTON_LABEL = "Citation"
    CITATION_BUTTON_TEXT = "Please cite us if you use this benchmark..."
    EVALUATION_QUEUE_TEXT = "Current evaluation queue:"
    INTRODUCTION_TEXT = """
    # Welcome to the MLE-Dojo Benchmark Leaderboard
    
    This leaderboard tracks the performance of various AI models across multiple machine learning engineering domains.
    Our comprehensive evaluation system uses ELO ratings to provide a fair comparison between different models.
    
    ## How to read this leaderboard
    - Select a domain category to view specialized rankings
    - Higher ELO scores indicate better performance
    - Click on any model name to learn more about it
    """
    LLM_BENCHMARKS_TEXT = """
    # About the MLE-Dojo Benchmark
    
    ## Evaluation Methodology
    The MLE-Dojo benchmark evaluates models across various domains including:
    
    - **MLE-Lite**: Basic machine learning engineering tasks
    - **Tabular**: Data manipulation, analysis, and modeling with structured data
    - **NLP**: Natural language processing tasks including classification, generation, and understanding
    - **CV**: Computer vision tasks including image classification, object detection, and generation
    
    Our evaluation uses a sophisticated ELO rating system that considers the relative performance of models against each other.
    
    ## Contact
    For more information or to submit your model, please contact us at [email protected]
    """
    TITLE = "<h1>πŸ† MLE-Dojo Benchmark Leaderboard</h1>"
    custom_css = ""
    REPO_ID = "your/space-id"
    def add_new_eval(*args): return "Submission placeholder."

# --- Elo Leaderboard Configuration ---
# Enhanced data with Rank (placeholder), Organizer, License, and URL
data = [
    {'model_name': 'gpt-4o-mini', 'url': 'https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/', 'organizer': 'OpenAI', 'license': 'Proprietary', 'MLE-Lite_Elo': 753, 'Tabular_Elo': 839, 'NLP_Elo': 758, 'CV_Elo': 754, 'Overall': 778},
    {'model_name': 'gpt-4o', 'url': 'https://openai.com/index/hello-gpt-4o/', 'organizer': 'OpenAI', 'license': 'Proprietary', 'MLE-Lite_Elo': 830, 'Tabular_Elo': 861, 'NLP_Elo': 903, 'CV_Elo': 761, 'Overall': 841},
    {'model_name': 'o3-mini', 'url': 'https://openai.com/index/openai-o3-mini/', 'organizer': 'OpenAI', 'license': 'Proprietary', 'MLE-Lite_Elo': 1108, 'Tabular_Elo': 1019, 'NLP_Elo': 1056, 'CV_Elo': 1207, 'Overall': 1096},
    {'model_name': 'deepseek-v3', 'url': 'https://api-docs.deepseek.com/news/news1226', 'organizer': 'DeepSeek', 'license': 'DeepSeek', 'MLE-Lite_Elo': 1004, 'Tabular_Elo': 1015, 'NLP_Elo': 1028, 'CV_Elo': 1067, 'Overall': 1023},
    {'model_name': 'deepseek-r1', 'url': 'https://api-docs.deepseek.com/news/news250120', 'organizer': 'DeepSeek', 'license': 'DeepSeek', 'MLE-Lite_Elo': 1137, 'Tabular_Elo': 1053, 'NLP_Elo': 1103, 'CV_Elo': 1083, 'Overall': 1100},
    {'model_name': 'gemini-2.0-flash', 'url': 'https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash', 'organizer': 'Google', 'license': 'Proprietary', 'MLE-Lite_Elo': 847, 'Tabular_Elo': 923, 'NLP_Elo': 860, 'CV_Elo': 978, 'Overall': 895},
    {'model_name': 'gemini-2.0-pro', 'url': 'https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/', 'organizer': 'Google', 'license': 'Proprietary', 'MLE-Lite_Elo': 1064, 'Tabular_Elo': 1139, 'NLP_Elo': 1028, 'CV_Elo': 973, 'Overall': 1054},
    {'model_name': 'gemini-2.5-pro', 'url': 'https://deepmind.google/technologies/gemini/pro/', 'organizer': 'Google', 'license': 'Proprietary', 'MLE-Lite_Elo': 1257, 'Tabular_Elo': 1150, 'NLP_Elo': 1266, 'CV_Elo': 1177, 'Overall': 1214},
]

# Add organization logos (for visual enhancement)
org_logos = {
    'OpenAI': 'πŸ“±',  # You can replace these with actual icon URLs in production
    'DeepSeek': 'πŸ”',
    'Google': '🌐',
    'Default': 'πŸ€–'
}

# Create a master DataFrame
master_df = pd.DataFrame(data)

# Add last updated timestamp
last_updated = datetime.now().strftime("%B %d, %Y at %H:%M:%S")

# Define categories with fancy icons
CATEGORIES = [
    ("πŸ† Overall", "Overall"), 
    ("πŸ’‘ MLE-Lite", "MLE-Lite"), 
    ("πŸ“Š Tabular", "Tabular"), 
    ("πŸ“ NLP", "NLP"), 
    ("πŸ‘οΈ CV", "CV")
]
DEFAULT_CATEGORY = "Overall"

# Map user-facing categories to DataFrame column names
category_to_column = {
    "MLE-Lite": "MLE-Lite_Elo",
    "Tabular": "Tabular_Elo",
    "NLP": "NLP_Elo",
    "CV": "CV_Elo",
    "Overall": "Overall"
}

# --- Helper function to update leaderboard ---
def update_leaderboard(category_label):
    """
    Enhanced function to update the leaderboard with visual improvements
    """
    # Extract the category value from the label if it's a tuple (icon, value)
    if isinstance(category_label, tuple):
        category = category_label[1]
    else:
        # For backward compatibility or direct values
        category = category_label.split(" ")[-1] if " " in category_label else category_label
    
    score_column = category_to_column.get(category)
    if score_column is None or score_column not in master_df.columns:
        print(f"Warning: Invalid category '{category}' or column '{score_column}'. Falling back to default.")
        score_column = category_to_column[DEFAULT_CATEGORY]
        if score_column not in master_df.columns:
            print(f"Error: Default column '{score_column}' also not found.")
            return pd.DataFrame({
                "Rank": [],
                "Model": [],
                "Organizer": [],
                "License": [],
                "Elo Score": []
            })

    # Select base columns + the score column for sorting
    cols_to_select = ['model_name', 'url', 'organizer', 'license', score_column]
    df = master_df[cols_to_select].copy()

    # Sort by the selected 'Elo Score' descending
    df.sort_values(by=score_column, ascending=False, inplace=True)

    # Add Rank with medal emojis for top 3
    df.reset_index(drop=True, inplace=True)
    
    # Create fancy rank with medals for top positions
    def get_rank_display(idx):
        if idx == 0:
            return "πŸ₯‡ 1"
        elif idx == 1:
            return "πŸ₯ˆ 2"
        elif idx == 2:
            return "πŸ₯‰ 3"
        else:
            return f"{idx + 1}"
    
    df.insert(0, 'Rank', df.index.map(get_rank_display))
    
    # Add organization icons to model names
    df['Model'] = df.apply(
        lambda row: f"""<div style="display: flex; align-items: center;">
            <span style="font-size: 1.5em; margin-right: 10px;">{org_logos.get(row['organizer'], org_logos['Default'])}</span>
            <a href='{row['url'] if pd.notna(row['url']) else '#'}' target='_blank' 
               style='color: #0066cc; text-decoration: none; font-weight: 500; font-size: 1.05em;'>
               {row['model_name']}
            </a>
        </div>""",
        axis=1
    )

    # Format Elo scores with visual indicators
    df['Elo Display'] = df[score_column].apply(
        lambda score: f"""<div style="display: flex; align-items: center;">
            <span style="font-weight: bold; color: {'#1a5fb4' if score >= 1000 else '#2ec27e' if score >= 900 else '#e5a50a' if score >= 800 else '#ff7800'}">
                {score}
            </span>
            <div style="margin-left: 10px; height: 12px; width: 60px; background-color: #eaeaea; border-radius: 6px; overflow: hidden;">
                <div style="height: 100%; width: {min(100, max(5, (score-700)/7))}%; background-color: {'#1a5fb4' if score >= 1000 else '#2ec27e' if score >= 900 else '#e5a50a' if score >= 800 else '#ff7800'};"></div>
            </div>
        </div>"""
    )

    # Rename columns for display
    df.rename(columns={score_column: 'Elo Score'}, inplace=True)
    df.rename(columns={'organizer': 'Organizer', 'license': 'License'}, inplace=True)

    # Select and reorder columns for final display
    final_columns = ["Rank", "Model", "Organizer", "License", "Elo Display"]
    df = df[final_columns]

    # Rename for display
    df.columns = ["Rank", "Model", "Organization", "License", f"Elo Score ({category})"]
    
    return df

# --- Mock/Placeholder functions/data for other tabs ---
print("Warning: Evaluation queue data fetching is disabled/mocked due to leaderboard changes.")
finished_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
running_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
pending_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
EVAL_COLS = ["Model", "Status", "Requested", "Started"]
EVAL_TYPES = ["str", "str", "str", "str"]

# --- Keep restart function if relevant ---
def restart_space():
    print(f"Attempting to restart space: {REPO_ID}")
    # Replace with your actual space restart mechanism if needed

# --- Enhanced CSS for beauty and readability ---
enhanced_css = """
/* Base styling */
:root {
    --primary-color: #1a5fb4;
    --secondary-color: #2ec27e;
    --accent-color: #e5a50a;
    --warning-color: #ff7800;
    --text-color: #333333;
    --background-color: #ffffff;
    --card-background: #f9f9f9;
    --border-color: #e0e0e0;
    --shadow-color: rgba(0, 0, 0, 0.1);
}

/* Typography */
body, .gradio-container {
    font-family: 'Inter', 'Segoe UI', Roboto, -apple-system, BlinkMacSystemFont, system-ui, sans-serif !important;
    font-size: 16px !important;
    line-height: 1.6 !important;
    color: var(--text-color) !important;
    background-color: var(--background-color) !important;
}

/* Headings */
h1 {
    font-size: 2.5rem !important;
    font-weight: 700 !important;
    margin-bottom: 1.5rem !important;
    color: var(--primary-color) !important;
    text-align: center !important;
    letter-spacing: -0.02em !important;
    line-height: 1.2 !important;
}

h2 {
    font-size: 1.8rem !important;
    font-weight: 600 !important;
    margin-top: 1.5rem !important;
    margin-bottom: 1rem !important;
    color: var(--primary-color) !important;
    letter-spacing: -0.01em !important;
}

h3 {
    font-size: 1.4rem !important;
    font-weight: 600 !important;
    margin-top: 1.2rem !important;
    margin-bottom: 0.8rem !important;
    color: var(--text-color) !important;
}

/* Tabs styling */
.tabs {
    margin-top: 1rem !important;
    border-radius: 12px !important;
    overflow: hidden !important;
    box-shadow: 0 4px 12px var(--shadow-color) !important;
}

.tab-nav button {
    font-size: 1.1rem !important;
    font-weight: 500 !important;
    padding: 0.8rem 1.5rem !important;
    border-radius: 0 !important;
    transition: all 0.2s ease !important;
}

.tab-nav button.selected {
    background-color: var(--primary-color) !important;
    color: white !important;
    font-weight: 600 !important;
}

/* Card styling */
.gradio-container .gr-box, .gradio-container .gr-panel {
    border-radius: 12px !important;
    border: 1px solid var(--border-color) !important;
    box-shadow: 0 4px 12px var(--shadow-color) !important;
    overflow: hidden !important;
}

/* Table styling */
table {
    width: 100% !important;
    border-collapse: separate !important;
    border-spacing: 0 !important;
    margin: 1.5rem 0 !important;
    border-radius: 8px !important;
    overflow: hidden !important;
    box-shadow: 0 4px 12px var(--shadow-color) !important;
}

th {
    background-color: #f0f5ff !important;
    color: var(--primary-color) !important;
    font-weight: 600 !important;
    padding: 1rem !important;
    font-size: 1.1rem !important;
    text-align: left !important;
    border-bottom: 2px solid var(--primary-color) !important;
}

td {
    padding: 1rem !important;
    border-bottom: 1px solid var(--border-color) !important;
    font-size: 1rem !important;
    vertical-align: middle !important;
}

tr:nth-child(even) {
    background-color: #f8fafd !important;
}

tr:hover {
    background-color: #edf2fb !important;
}

tr:first-child td {
    border-top: none !important;
}

/* Button styling */
button.primary, .gr-button.primary {
    background-color: var(--primary-color) !important;
    color: white !important;
    font-weight: 500 !important;
    padding: 0.8rem 1.5rem !important;
    border-radius: 8px !important;
    border: none !important;
    cursor: pointer !important;
    transition: all 0.2s ease !important;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1) !important;
}

button.primary:hover, .gr-button.primary:hover {
    background-color: #0b4a9e !important;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
    transform: translateY(-1px) !important;
}

/* Radio buttons */
.gr-radio {
    display: flex !important;
    flex-wrap: wrap !important;
    gap: 10px !important;
    margin: 1rem 0 !important;
}

.gr-radio label {
    background-color: #f5f7fa !important;
    border: 1px solid var(--border-color) !important;
    border-radius: 8px !important;
    padding: 0.7rem 1.2rem !important;
    font-size: 1rem !important;
    font-weight: 500 !important;
    cursor: pointer !important;
    transition: all 0.2s ease !important;
    display: flex !important;
    align-items: center !important;
    gap: 8px !important;
}

.gr-radio label:hover {
    background-color: #eaeef3 !important;
    border-color: #c0c9d6 !important;
}

.gr-radio label.selected {
    background-color: #e0e9f7 !important;
    border-color: var(--primary-color) !important;
    color: var(--primary-color) !important;
    font-weight: 600 !important;
}

/* Input fields */
input, textarea, select {
    font-size: 1rem !important;
    padding: 0.8rem !important;
    border-radius: 8px !important;
    border: 1px solid var(--border-color) !important;
    transition: all 0.2s ease !important;
}

input:focus, textarea:focus, select:focus {
    border-color: var(--primary-color) !important;
    box-shadow: 0 0 0 2px rgba(26, 95, 180, 0.2) !important;
    outline: none !important;
}

/* Accordion styling */
.gr-accordion {
    border-radius: 8px !important;
    overflow: hidden !important;
    margin: 1rem 0 !important;
    border: 1px solid var(--border-color) !important;
}

.gr-accordion-header {
    padding: 1rem !important;
    background-color: #f5f7fa !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    color: var(--text-color) !important;
}

.gr-accordion-content {
    padding: 1rem !important;
    background-color: white !important;
}

/* Markdown text improvements */
.markdown-text {
    font-size: 1.05rem !important;
    line-height: 1.7 !important;
}

.markdown-text p {
    margin-bottom: 1rem !important;
}

.markdown-text ul, .markdown-text ol {
    margin-left: 1.5rem !important;
    margin-bottom: 1rem !important;
}

.markdown-text li {
    margin-bottom: 0.5rem !important;
}

.markdown-text strong {
    font-weight: 600 !important;
    color: #333 !important;
}

/* Status indicators */
.status-badge {
    display: inline-block;
    padding: 0.3rem 0.7rem;
    border-radius: 99px;
    font-size: 0.85rem;
    font-weight: 500;
    text-align: center;
}

.status-pending {
    background-color: #fff8e0;
    color: #b58a00;
    border: 1px solid #ffd74d;
}

.status-running {
    background-color: #e0f2ff;
    color: #0066cc;
    border: 1px solid #66b3ff;
}

.status-completed {
    background-color: #e6f7ef;
    color: #00875a;
    border: 1px solid #57d9a3;
}

/* Footer */
.footer {
    margin-top: 2rem;
    padding: 1rem;
    text-align: center;
    font-size: 0.9rem;
    color: #666;
    border-top: 1px solid var(--border-color);
}

/* Enhanced leaderboard title */
.leaderboard-header {
    display: flex;
    align-items: center;
    justify-content: space-between;
    margin-bottom: 1.5rem;
    padding-bottom: 1rem;
    border-bottom: 2px solid var(--border-color);
}

.leaderboard-title {
    font-size: 2.2rem;
    font-weight: 700;
    color: var(--primary-color);
    margin: 0;
    display: flex;
    align-items: center;
    gap: 0.5rem;
}

.leaderboard-subtitle {
    font-size: 1.1rem;
    color: #666;
    margin-top: 0.5rem;
}

.timestamp {
    font-size: 0.85rem;
    color: #666;
    font-style: italic;
}

/* Category selector buttons */
.category-buttons {
    display: flex;
    flex-wrap: wrap;
    gap: 10px;
    margin-bottom: 1.5rem;
}

.category-button {
    padding: 0.7rem 1.2rem;
    background-color: #f0f5ff;
    border: 1px solid #d0e0ff;
    border-radius: 8px;
    font-weight: 500;
    cursor: pointer;
    transition: all 0.2s ease;
    display: flex;
    align-items: center;
    gap: 8px;
}

.category-button:hover {
    background-color: #e0ebff;
    border-color: #b0d0ff;
}

.category-button.active {
    background-color: var(--primary-color);
    color: white;
    border-color: var(--primary-color);
}

/* Logo and brand styling */
.logo {
    font-size: 2.5em;
    margin-right: 0.5rem;
}

/* Medal styling for top ranks */
.rank-1 {
    color: #ffd700;
    font-weight: bold;
}

.rank-2 {
    color: #c0c0c0;
    font-weight: bold;
}

.rank-3 {
    color: #cd7f32;
    font-weight: bold;
}
"""

# Combine with any existing CSS
custom_css = enhanced_css + custom_css

# --- Gradio App Definition ---
demo = gr.Blocks(css=custom_css, theme=gr.themes.Soft())

with demo:
    # Enhanced header with timestamp
    gr.HTML(f"""
    <div class="leaderboard-header">
        <div>
            <div class="leaderboard-title">
                <span class="logo">πŸ†</span> MLE-Dojo Benchmark Leaderboard
            </div>
            <div class="leaderboard-subtitle">
                Comprehensive evaluation of AI models across multiple domains
            </div>
        </div>
        <div class="timestamp">
            Last updated: {last_updated}
        </div>
    </div>
    """)

    # Introduction with enhanced styling
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ“Š Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Column():
                gr.HTML("""
                <h2 style="display: flex; align-items: center; gap: 10px;">
                    <span style="font-size: 1.3em;">πŸ“ˆ</span> Model Performance Rankings
                </h2>
                <p class="leaderboard-subtitle">Select a category to view specialized performance metrics</p>
                """)
                
                # Enhanced category selector
                category_selector = gr.Radio(
                    choices=[x[0] for x in CATEGORIES],
                    label="Select Performance Domain:",
                    value="πŸ† Overall",
                    interactive=True,
                    elem_classes="fancy-radio"
                )
                
                # Visual separator
                gr.HTML('<div style="height: 1px; background-color: #e0e0e0; margin: 20px 0;"></div>')
                
                # Enhanced leaderboard table
                leaderboard_df_component = gr.Dataframe(
                    value=update_leaderboard(DEFAULT_CATEGORY),
                    headers=["Rank", "Model", "Organization", "License", f"Elo Score ({DEFAULT_CATEGORY})"],
                    datatype=["html", "html", "str", "str", "html"],
                    interactive=False,
                    row_count=(len(master_df), "fixed"),
                    col_count=(5, "fixed"),
                    wrap=True,
                    elem_id="leaderboard-table",
                )
                
                # Stats cards (visual enhancement)
                with gr.Row():
                    with gr.Column(scale=1):
                        gr.HTML(f"""
                        <div style="background-color: #f0f5ff; padding: 20px; border-radius: 12px; text-align: center;">
                            <div style="font-size: 2em;">πŸ”</div>
                            <div style="font-size: 2em; font-weight: bold; color: #1a5fb4;">{len(master_df)}</div>
                            <div style="font-size: 1.1em; color: #666;">Models Evaluated</div>
                        </div>
                        """)
                    with gr.Column(scale=1):
                        gr.HTML(f"""
                        <div style="background-color: #e6f7ef; padding: 20px; border-radius: 12px; text-align: center;">
                            <div style="font-size: 2em;">🌐</div>
                            <div style="font-size: 2em; font-weight: bold; color: #00875a;">{master_df['organizer'].nunique()}</div>
                            <div style="font-size: 1.1em; color: #666;">Organizations</div>
                        </div>
                        """)
                    with gr.Column(scale=1):
                        gr.HTML(f"""
                        <div style="background-color: #fff8e0; padding: 20px; border-radius: 12px; text-align: center;">
                            <div style="font-size: 2em;">πŸ…</div>
                            <div style="font-size: 2em; font-weight: bold; color: #b58a00;">{len(CATEGORIES)}</div>
                            <div style="font-size: 1.1em; color: #666;">Performance Domains</div>
                        </div>
                        """)
                
                # Link the radio button change to the update function
                category_selector.change(
                    fn=update_leaderboard,
                    inputs=category_selector,
                    outputs=leaderboard_df_component
                )

        with gr.TabItem("πŸ“š About", elem_id="llm-benchmark-tab-about", id=1):
            # Enhanced about section
            gr.HTML("""
            <div class="about-header" style="display: flex; align-items: center; gap: 20px; margin-bottom: 20px;">
                <div style="font-size: 4em;">πŸ§ͺ</div>
                <div>
                    <h2 style="margin: 0;">About the MLE-Dojo Benchmark</h2>
                    <p style="margin: 5px 0 0 0; color: #666;">A comprehensive evaluation framework for AI models</p>
                </div>
            </div>
            """)
            
            # Use the LLM_BENCHMARKS_TEXT variable
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
            
            # Add methodology cards for visual enhancement
            with gr.Row():
                with gr.Column():
                    gr.HTML("""
                    <div style="background-color: #f5f7fa; padding: 20px; border-radius: 12px; height: 100%;">
                        <div style="font-size: 2em; text-align: center; margin-bottom: 15px;">πŸ’‘</div>
                        <h3 style="text-align: center; margin-top: 0;">MLE-Lite</h3>
                        <p>Evaluates a model's ability to handle basic machine learning engineering tasks including 
                        data preprocessing, feature engineering, model selection, and basic deployment.</p>
                    </div>
                    """)
                with gr.Column():
                    gr.HTML("""
                    <div style="background-color: #f5f7fa; padding: 20px; border-radius: 12px; height: 100%;">
                        <div style="font-size: 2em; text-align: center; margin-bottom: 15px;">πŸ“Š</div>
                        <h3 style="text-align: center; margin-top: 0;">Tabular</h3>
                        <p>Tests a model's ability to process, analyze and model structured data, including 
                        statistical analysis,statistical analysis, predictive modeling, and data visualization with tabular datasets.</p>
                    </div>
                    """)
            
            with gr.Row():
                with gr.Column():
                    gr.HTML("""
                    <div style="background-color: #f5f7fa; padding: 20px; border-radius: 12px; height: 100%;">
                        <div style="font-size: 2em; text-align: center; margin-bottom: 15px;">πŸ“</div>
                        <h3 style="text-align: center; margin-top: 0;">NLP</h3>
                        <p>Evaluates natural language processing capabilities including text classification, 
                        sentiment analysis, entity recognition, text generation, and language understanding.</p>
                    </div>
                    """)
                with gr.Column():
                    gr.HTML("""
                    <div style="background-color: #f5f7fa; padding: 20px; border-radius: 12px; height: 100%;">
                        <div style="font-size: 2em; text-align: center; margin-bottom: 15px;">πŸ‘οΈ</div>
                        <h3 style="text-align: center; margin-top: 0;">CV</h3>
                        <p>Tests computer vision capabilities including image classification, object detection, 
                        image generation, and visual understanding tasks across various domains.</p>
                    </div>
                    """)

        # Optional: Uncomment if you want to re-enable the Submit tab
        # with gr.TabItem("πŸš€ Submit Model", elem_id="llm-benchmark-tab-submit", id=2):
        #     with gr.Column():
        #         gr.HTML("""
        #         <div class="about-header" style="display: flex; align-items: center; gap: 20px; margin-bottom: 20px;">
        #             <div style="font-size: 4em;">πŸš€</div>
        #             <div>
        #                 <h2 style="margin: 0;">Submit Your Model for Evaluation</h2>
        #                 <p style="margin: 5px 0 0 0; color: #666;">Add your model to the MLE-Dojo leaderboard</p>
        #             </div>
        #         </div>
        #         """)
        #
        #         with gr.Row():
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        #         
        #         with gr.Column():
        #             with gr.Accordion(f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
        #                  finished_eval_table = gr.components.Dataframe(
        #                      value=finished_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5,
        #                 )
        #             with gr.Accordion(f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
        #                  running_eval_table = gr.components.Dataframe(
        #                      value=running_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5,
        #                 )
        #             with gr.Accordion(f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
        #                 pending_eval_table = gr.components.Dataframe(
        #                     value=pending_eval_queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5,
        #                 )
        #         
        #         gr.HTML('<div style="height: 1px; background-color: #e0e0e0; margin: 20px 0;"></div>')
        #         
        #         gr.HTML("""
        #         <h2 style="display: flex; align-items: center; gap: 10px;">
        #             <span style="font-size: 1.3em;">πŸ“</span> Model Submission Form
        #         </h2>
        #         """)
        #         
        #         with gr.Row():
        #             with gr.Column():
        #                 model_name_textbox = gr.Textbox(
        #                     label="Model Name (on Hugging Face Hub)",
        #                     placeholder="Enter your model name...",
        #                     elem_classes="enhanced-input"
        #                 )
        #                 revision_name_textbox = gr.Textbox(
        #                     label="Revision / Commit Hash",
        #                     placeholder="main",
        #                     elem_classes="enhanced-input"
        #                 )
        #                 model_type = gr.Dropdown(
        #                     choices=["Type A", "Type B", "Type C"],
        #                     label="Model Type",
        #                     multiselect=False,
        #                     value=None,
        #                     interactive=True,
        #                     elem_classes="enhanced-dropdown"
        #                 )
        #             with gr.Column():
        #                 precision = gr.Dropdown(
        #                     choices=["float16", "bfloat16", "float32", "int8", "auto"],
        #                     label="Precision",
        #                     multiselect=False,
        #                     value="auto",
        #                     interactive=True,
        #                     elem_classes="enhanced-dropdown"
        #                 )
        #                 weight_type = gr.Dropdown(
        #                     choices=["Original", "Adapter", "Delta"],
        #                     label="Weights Type",
        #                     multiselect=False,
        #                     value="Original",
        #                     interactive=True,
        #                     elem_classes="enhanced-dropdown"
        #                 )
        #                 base_model_name_textbox = gr.Textbox(
        #                     label="Base Model (for delta or adapter weights)",
        #                     placeholder="Only needed for adapter/delta weights",
        #                     elem_classes="enhanced-input"
        #                 )
        #         
        #         submit_button = gr.Button(
        #             "Submit for Evaluation",
        #             elem_classes="primary-button"
        #         )
        #         submission_result = gr.Markdown()
        #         submit_button.click(
        #             add_new_eval,
        #             [model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type],
        #             submission_result,
        #         )

    # Enhanced citation section
    with gr.Accordion("πŸ“„ Citation", open=False, elem_classes="citation-accordion"):
        gr.HTML("""
        <div style="display: flex; align-items: center; gap: 20px; margin-bottom: 15px;">
            <div style="font-size: 2.5em;">πŸ“„</div>
            <div>
                <h3 style="margin: 0;">How to Cite This Benchmark</h3>
                <p style="margin: 5px 0 0 0; color: #666;">Please use the following citation if you use this benchmark in your research</p>
            </div>
        </div>
        """)
        
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            lines=10,
            elem_id="citation-button",
            show_copy_button=True,
        )
    
    # Footer
    gr.HTML("""
    <div class="footer">
        <p>Β© 2025 MLE-Dojo Benchmark. All rights reserved.</p>
        <p style="margin-top: 5px; display: flex; justify-content: center; gap: 20px;">
            <a href="#" style="color: #1a5fb4; text-decoration: none;">Privacy Policy</a>
            <a href="#" style="color: #1a5fb4; text-decoration: none;">Terms of Service</a>
            <a href="#" style="color: #1a5fb4; text-decoration: none;">Contact Us</a>
        </p>
    </div>
    """)

# --- Keep scheduler if relevant ---
if __name__ == "__main__":
    try:
        scheduler = BackgroundScheduler()
        if callable(restart_space):
             if REPO_ID and REPO_ID != "your/space-id":
                 scheduler.add_job(restart_space, "interval", seconds=1800)  # Restart every 30 mins
                 scheduler.start()
             else:
                 print("Warning: REPO_ID not set or is placeholder; space restart job not scheduled.")
        else:
             print("Warning: restart_space function not available; space restart job not scheduled.")
    except Exception as e:
        print(f"Failed to initialize or start scheduler: {e}")

# --- Launch the app ---
if __name__ == "__main__":
    print("Launching Enhanced Gradio App...")
    demo.launch()