File size: 11,446 Bytes
22cc60c
 
 
b41aa3c
 
 
22cc60c
 
 
 
 
 
 
b41aa3c
 
 
 
 
 
 
 
 
 
f364096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41aa3c
f364096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41aa3c
 
 
 
f364096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41aa3c
 
 
f364096
b41aa3c
 
 
 
 
 
 
f364096
b41aa3c
f364096
22cc60c
b41aa3c
 
 
 
22cc60c
b41aa3c
22cc60c
 
 
 
 
1f8bbc4
b41aa3c
 
 
 
f364096
 
b41aa3c
f364096
b41aa3c
 
f364096
 
b41aa3c
 
 
f364096
 
 
b41aa3c
 
 
 
 
 
 
22cc60c
 
f364096
22cc60c
 
1f8bbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22cc60c
 
 
f364096
22cc60c
 
 
 
 
 
 
 
b41aa3c
 
 
 
 
 
f364096
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
# Removed Hugging Face Hub imports as they are not needed for the simplified leaderboard
# from huggingface_hub import snapshot_download, HfApi
from src.about import ( # Assuming these still exist and are relevant for other tabs
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css # Keep custom CSS
# Removed utils imports related to the old leaderboard
# from src.display.utils import (...)
from src.envs import REPO_ID # Keep if needed for restart_space or other functions
# Removed constants related to old data paths and repos if not needed elsewhere
# from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
# Removed old data processing functions
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval # Keep submission logic

# --- Elo Leaderboard Configuration ---
# Data from the table provided by the user
data = [
    {'model': 'gpt-4o-mini', 'MLE-Lite_Elo': 753, 'Tabular_Elo': 839, 'NLP_Elo': 758, 'CV_Elo': 754, 'Overall': 778},
    {'model': 'gpt-4o', 'MLE-Lite_Elo': 830, 'Tabular_Elo': 861, 'NLP_Elo': 903, 'CV_Elo': 761, 'Overall': 841},
    {'model': 'o3-mini', 'MLE-Lite_Elo': 1108, 'Tabular_Elo': 1019, 'NLP_Elo': 1056, 'CV_Elo': 1207, 'Overall': 1096},
    # Renamed 'DeepSeek-v3' to match previous list - adjust if needed
    {'model': 'deepseek-v3', 'MLE-Lite_Elo': 1004, 'Tabular_Elo': 1015, 'NLP_Elo': 1028, 'CV_Elo': 1067, 'Overall': 1023},
    # Renamed 'DeepSeek-r1' to match previous list - adjust if needed
    {'model': 'deepseek-r1', 'MLE-Lite_Elo': 1137, 'Tabular_Elo': 1053, 'NLP_Elo': 1103, 'CV_Elo': 1083, 'Overall': 1100},
    # Renamed 'Gemini-2.0-Flash' to match previous list - adjust if needed
    {'model': 'gemini-2.0-flash', 'MLE-Lite_Elo': 847, 'Tabular_Elo': 923, 'NLP_Elo': 860, 'CV_Elo': 978, 'Overall': 895},
    # Renamed 'Gemini-2.0-Pro' to match previous list - adjust if needed
    {'model': 'gemini-2.0-pro', 'MLE-Lite_Elo': 1064, 'Tabular_Elo': 1139, 'NLP_Elo': 1028, 'CV_Elo': 973, 'Overall': 1054},
    # Renamed 'Gemini-2.5-Pro' to match previous list - adjust if needed
    {'model': 'gemini-2.5-pro', 'MLE-Lite_Elo': 1257, 'Tabular_Elo': 1150, 'NLP_Elo': 1266, 'CV_Elo': 1177, 'Overall': 1214},
]

# Create a master DataFrame
master_df = pd.DataFrame(data)

# Define categories for selection (user-facing)
CATEGORIES = ["MLE-Lite", "Tabular", "NLP", "CV", "Overall"]
DEFAULT_CATEGORY = "Overall" # Set a default category

# Map user-facing categories to DataFrame column names
category_to_column = {
    "MLE-Lite": "MLE-Lite_Elo",
    "Tabular": "Tabular_Elo",
    "NLP": "NLP_Elo",
    "CV": "CV_Elo",
    "Overall": "Overall"
}

# --- Helper function to update leaderboard ---
def update_leaderboard(category):
    """
    Selects the relevant columns for the category, renames the score column
    to 'Elo Score', sorts by score descending, and returns the DataFrame.
    """
    score_column = category_to_column.get(category)
    if score_column is None or score_column not in master_df.columns:
        # Fallback if category or column is invalid
        print(f"Warning: Invalid category '{category}' or column '{score_column}'. Falling back to default.")
        score_column = category_to_column[DEFAULT_CATEGORY]
        if score_column not in master_df.columns: # Check fallback column too
             return pd.DataFrame({"Model": [], "Elo Score": []}) # Return empty if still invalid

    # Select model and the specific score column
    df = master_df[['model', score_column]].copy()

    # Rename the score column to 'Elo Score' for consistent display
    df.rename(columns={score_column: 'Elo Score'}, inplace=True)

    # Sort by 'Elo Score' descending
    df.sort_values(by='Elo Score', ascending=False, inplace=True)

    # Reset index for cleaner display (optional)
    df.reset_index(drop=True, inplace=True)

    return df

# --- Mock/Placeholder functions/data for other tabs ---
# (Same as previous version - providing empty data)
print("Warning: Evaluation queue data fetching is disabled/mocked due to leaderboard changes.")
finished_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
running_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
pending_eval_queue_df = pd.DataFrame(columns=["Model", "Status", "Requested", "Started"])
EVAL_COLS = ["Model", "Status", "Requested", "Started"] # Define for the dataframe headers
EVAL_TYPES = ["str", "str", "str", "str"] # Define for the dataframe types


# --- Keep restart function if relevant ---
# (Same as previous version)
def restart_space():
    print(f"Attempting to restart space: {REPO_ID}")
    # Replace with your actual space restart mechanism if needed

# --- Gradio App Definition ---
demo = gr.Blocks(css=custom_css)

with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… MLE-Dojo Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Column():
                gr.Markdown("## Model Elo Rankings") # New title for the section
                category_selector = gr.Radio(
                    choices=CATEGORIES,
                    label="Select Category to Sort By", # Updated label
                    value=DEFAULT_CATEGORY, # Default selection
                    interactive=True,
                    container=False,
                )
                leaderboard_df_component = gr.Dataframe(
                    # Initialize with sorted data for the default category
                    value=update_leaderboard(DEFAULT_CATEGORY),
                    headers=["Model", "Elo Score"],
                    datatype=["str", "number"],
                    interactive=False,
                    # Adjust row count based on the number of models
                    row_count=(len(master_df), "fixed"),
                    col_count=(2, "fixed"),
                )
                # Link the radio button change to the update function
                category_selector.change(
                    fn=update_leaderboard,
                    inputs=category_selector,
                    outputs=leaderboard_df_component
                )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            # (Content unchanged)
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
        #     # (Content unchanged, still uses potentially empty/mock queue data)
        #     with gr.Column():
        #         with gr.Row():
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        #         with gr.Column():
        #             with gr.Accordion(
        #                 f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                    finished_eval_table = gr.components.Dataframe(
        #                         value=finished_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                    )
        #             with gr.Accordion(
        #                 f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     running_eval_table = gr.components.Dataframe(
        #                         value=running_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #             with gr.Accordion(
        #                 f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     pending_eval_table = gr.components.Dataframe(
        #                         value=pending_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )

        #     with gr.Row():
        #         gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
        #     with gr.Row():
        #          # Submission form - kept as is
        #         with gr.Column():
        #             model_name_textbox = gr.Textbox(label="Model name")
        #             revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
        #             model_type = gr.Dropdown(
        #                 choices=["Type A", "Type B", "Type C"], # Example choices
        #                 label="Model type",
        #                 multiselect=False,
        #                 value=None,
        #                 interactive=True,
        #             )
        #         with gr.Column():
        #             precision = gr.Dropdown(
        #                 choices=["float16", "bfloat16", "float32", "int8"], # Example choices
        #                 label="Precision",
        #                 multiselect=False,
        #                 value="float16",
        #                 interactive=True,
        #             )
        #             weight_type = gr.Dropdown(
        #                 choices=["Original", "Adapter", "Delta"], # Example choices
        #                 label="Weights type",
        #                 multiselect=False,
        #                 value="Original",
        #                 interactive=True,
        #             )
        #             base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

        #     submit_button = gr.Button("Submit Eval")
        #     submission_result = gr.Markdown()

        #     submit_button.click(
        #         add_new_eval,
        #         [
        #             model_name_textbox,
        #             base_model_name_textbox,
        #             revision_name_textbox,
        #             precision,
        #             weight_type,
        #             model_type,
        #         ],
        #         submission_result,
        #     )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
             # (Content unchanged)
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

# --- Keep scheduler if relevant ---
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800) # Restart every 30 mins
# scheduler.start()

# --- Launch the app ---
demo.launch()