File size: 7,551 Bytes
22cc60c
 
 
1007e19
3dd92ec
f065bf1
306046a
f065bf1
 
3dd92ec
 
 
f065bf1
3dd92ec
7b8bbf4
3dd92ec
 
 
 
 
 
 
f065bf1
3dd92ec
 
7b8bbf4
3dd92ec
 
306046a
 
3dd92ec
c13e962
 
3dd92ec
c13e962
3dd92ec
 
 
 
 
c13e962
3dd92ec
f065bf1
 
3aab004
3dd92ec
 
 
 
 
 
 
 
b41aa3c
3aab004
 
3dd92ec
c13e962
3dd92ec
 
 
 
 
 
 
 
 
39c3577
306046a
 
3dd92ec
c13e962
3dd92ec
c13e962
 
3dd92ec
 
 
306046a
c13e962
 
3dd92ec
 
 
f065bf1
3dd92ec
 
f065bf1
0f4f58e
 
3dd92ec
c13e962
3dd92ec
c13e962
0f4f58e
c13e962
3dd92ec
 
 
c13e962
306046a
3dd92ec
c13e962
306046a
c13e962
3dd92ec
 
306046a
3dd92ec
 
 
 
 
c13e962
 
f065bf1
3dd92ec
f065bf1
c13e962
3dd92ec
 
f065bf1
3dd92ec
3aab004
3dd92ec
c13e962
3aab004
 
3dd92ec
 
 
 
c13e962
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler

"""
MLE‑Dojo Benchmark Leaderboard — Dark Elegance v3
================================================
* Fix: removed unsupported `height` param for `gr.Dataframe`.
* Font tweak: leaderboard cells slightly smaller.
"""

# ---------------------------------------------------------------------------
#  Import copy or fallback placeholders
# ---------------------------------------------------------------------------
try:
    from src.about import (
        CITATION_BUTTON_LABEL,
        CITATION_BUTTON_TEXT,
        INTRODUCTION_TEXT,
        LLM_BENCHMARKS_TEXT,
        TITLE,
    )
    from src.display.css_html_js import custom_css
    from src.envs import REPO_ID
    from src.submission.submit import add_new_eval
except ImportError:
    CITATION_BUTTON_LABEL = "Citation"
    CITATION_BUTTON_TEXT  = "Please cite us if you use this benchmark…"
    INTRODUCTION_TEXT     = "Welcome to the **MLE‑Dojo Benchmark Leaderboard** — compare LLM agents across realistic ML‑engineering tasks."
    LLM_BENCHMARKS_TEXT   = "Further details about tasks, metrics, and evaluation pipelines."
    TITLE = (
        "<h1 class='hero-title gradient-text'>🏆 MLE‑Dojo Benchmark Leaderboard</h1>"
        "<p class='subtitle'>Interactive, reproducible &amp; community‑driven ML‑agent benchmarking</p>"
    )
    custom_css = ""
    REPO_ID = "your/space-id"
    def add_new_eval(*_):
        return "Submission placeholder."

# ---------------------------------------------------------------------------
#  Data
# ---------------------------------------------------------------------------
# (unchanged)-------------------------------------------

data = [
    {"model_name": "gpt-4o-mini",     "url": "https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/", "organizer": "OpenAI",  "license": "Proprietary", "MLE-Lite_Elo": 753,  "Tabular_Elo": 839,  "NLP_Elo": 758,  "CV_Elo": 754,  "Overall": 778},
    {"model_name": "gpt-4o",          "url": "https://openai.com/index/hello-gpt-4o/",                                      "organizer": "OpenAI",  "license": "Proprietary", "MLE-Lite_Elo": 830,  "Tabular_Elo": 861,  "NLP_Elo": 903,  "CV_Elo": 761,  "Overall": 841},
    {"model_name": "o3-mini",         "url": "https://openai.com/index/openai-o3-mini/",                                    "organizer": "OpenAI",  "license": "Proprietary", "MLE-Lite_Elo": 1108, "Tabular_Elo": 1019, "NLP_Elo": 1056, "CV_Elo": 1207, "Overall": 1096},
    {"model_name": "deepseek-v3",     "url": "https://api-docs.deepseek.com/news/news1226",                                   "organizer": "DeepSeek", "license": "DeepSeek",    "MLE-Lite_Elo": 1004, "Tabular_Elo": 1015, "NLP_Elo": 1028, "CV_Elo": 1067, "Overall": 1023},
    {"model_name": "deepseek-r1",     "url": "https://api-docs.deepseek.com/news/news250120",                                 "organizer": "DeepSeek", "license": "DeepSeek",    "MLE-Lite_Elo": 1137, "Tabular_Elo": 1053, "NLP_Elo": 1103, "CV_Elo": 1083, "Overall": 1100},
    {"model_name": "gemini-2.0-flash", "url": "https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash",               "organizer": "Google",  "license": "Proprietary", "MLE-Lite_Elo": 847,  "Tabular_Elo": 923,  "NLP_Elo": 860,  "CV_Elo": 978,  "Overall": 895},
    {"model_name": "gemini-2.0-pro",   "url": "https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/", "organizer": "Google",  "license": "Proprietary", "MLE-Lite_Elo": 1064, "Tabular_Elo": 1139, "NLP_Elo": 1028, "CV_Elo": 973,  "Overall": 1054},
    {"model_name": "gemini-2.5-pro",   "url": "https://deepmind.google/technologies/gemini/pro/",                           "organizer": "Google",  "license": "Proprietary", "MLE-Lite_Elo": 1257, "Tabular_Elo": 1150, "NLP_Elo": 1266, "CV_Elo": 1177, "Overall": 1214},
]
master_df = pd.DataFrame(data)

# ---------------------------------------------------------------------------
#  Helpers
# ---------------------------------------------------------------------------
CATEGORIES = ["Overall", "MLE-Lite", "Tabular", "NLP", "CV"]
DEFAULT_CATEGORY = "Overall"
CATEGORY_MAP = {
    "Overall": "Overall",
    "MLE-Lite": "MLE-Lite_Elo",
    "Tabular": "Tabular_Elo",
    "NLP": "NLP_Elo",
    "CV": "CV_Elo",
}
MEDALS = {1: "🥇", 2: "🥈", 3: "🥉"}

def update_leaderboard(category: str, ascending: bool):
    col = CATEGORY_MAP.get(category, CATEGORY_MAP[DEFAULT_CATEGORY])
    df = (
        master_df[["model_name", "url", "organizer", "license", col]]
        .sort_values(by=col, ascending=ascending)
        .reset_index(drop=True)
    )
    df.insert(0, "Rank", df.index + 1)
    df["Rank"] = df["Rank"].apply(lambda r: MEDALS.get(r, str(r)))
    df["Model"] = df.apply(lambda r: f"<a href='{r.url}' target='_blank'>{r.model_name}</a>", axis=1)
    df.rename(columns={"organizer": "Organizer", "license": "License", col: "Elo Score"}, inplace=True)
    return df[["Rank", "Model", "Organizer", "License", "Elo Score"]]

# ---------------------------------------------------------------------------
#  CSS (dark + slightly smaller table font)
# ---------------------------------------------------------------------------
custom_css += """
#leaderboard-table td{padding:.7em;font-size:1.05rem;border-top:1px solid #334155;}
"""

# ---------------------------------------------------------------------------
#  Gradio App
# ---------------------------------------------------------------------------
app = gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="sky", neutral_hue="slate", font=["Inter",]))

with app:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    with gr.Tabs():
        with gr.TabItem("🏅 Leaderboard"):
            gr.HTML("<h3 class='section-title'><span class='icon'>📊</span>Model Elo Rankings by Category</h3>")
            with gr.Row():
                category_radio = gr.Radio(CATEGORIES, value=DEFAULT_CATEGORY, label="Category")
                asc_check      = gr.Checkbox(label="⬆️ Asc. order", value=False)
            board = gr.Dataframe(
                value=update_leaderboard(DEFAULT_CATEGORY, False),
                headers=["Rank", "Model", "Organizer", "License", "Elo Score"],
                datatype=["html", "html", "str", "str", "number"],
                row_count=(len(master_df), "fixed"),
                col_count=(5, "fixed"),
                interactive=False,
                elem_id="leaderboard-table",
            )
            category_radio.change(update_leaderboard, [category_radio, asc_check], board)
            asc_check.change(update_leaderboard, [category_radio, asc_check], board)
        with gr.TabItem("ℹ️ About"):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
    with gr.Accordion("📖 Citation", open=False):
        gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=10, show_copy_button=True)

# ---------------------------------------------------------------------------
#  Optional scheduler
# ---------------------------------------------------------------------------

def restart_space():
    print(f"Restarting space → {REPO_ID}")

if __name__ == "__main__":
    if REPO_ID != "your/space-id":
        scheduler = BackgroundScheduler()
        scheduler.add_job(restart_space, "interval", seconds=1800)
        scheduler.start()
    print("Launching app…")
    app.launch()