File size: 5,765 Bytes
3d8dbe8
8b1f7a0
 
3b3db42
 
2caaddf
 
29546b4
3d8dbe8
 
 
91e8a06
8b1f7a0
 
 
 
 
 
 
 
 
 
 
29546b4
3d8dbe8
 
2caaddf
3d8dbe8
236bb17
 
3d8dbe8
2caaddf
 
 
3d8dbe8
2caaddf
3d8dbe8
236bb17
2caaddf
236bb17
3d8dbe8
 
 
 
 
 
 
2caaddf
3d8dbe8
 
 
8b1f7a0
29546b4
8b1f7a0
 
 
 
 
236bb17
 
 
8b1f7a0
 
29546b4
8b1f7a0
3d8dbe8
8b1f7a0
2a860f6
 
8b1f7a0
 
236bb17
2caaddf
 
 
 
8b1f7a0
 
 
 
 
 
2caaddf
236bb17
 
 
 
 
 
 
2caaddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236bb17
2caaddf
236bb17
2caaddf
236bb17
2caaddf
236bb17
2caaddf
 
8b1f7a0
3d8dbe8
 
 
 
 
 
1b780de
3d8dbe8
 
 
 
 
1b780de
 
3d8dbe8
 
 
 
 
8b1f7a0
 
 
 
 
 
 
ceb2102
8b1f7a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks, TaskType


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["n_shot", ColumnContent, ColumnContent("N-Shot", "number", False)])
auto_eval_column_dict.append(["prompt_version", ColumnContent, ColumnContent("Version", "str", False)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average (All) ⬆️", "number", True)])
for task_type in TaskType:
    auto_eval_column_dict.append([task_type.value.name, ColumnContent, ColumnContent(f"Average ({task_type.value.display_name}) {task_type.value.symbol}", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", task.value.is_primary_metric)])
# Model information
auto_eval_column_dict.append(["model_training", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["maltese_training", ColumnContent, ColumnContent("Maltese Training", "str", False)])
auto_eval_column_dict.append(["language_count", ColumnContent, ColumnContent("#Languages", "number", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model SHA", "str", False, False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    precision = ColumnContent("precision", "str", True)
    n_shot = ColumnContent("n_shot", "int", True)
    prompt_version = ColumnContent("prompt_version", "str", True)
    seed = ColumnContent("seed", "int", True)
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji


class ModelTraining(Enum):
    PT = ModelDetails(name="pre-trained", symbol="PT")
    FT = ModelDetails(name="fine-tuned", symbol="FT")
    IT = ModelDetails(name="instruction-tuned", symbol="IT")
    NK = ModelDetails(name="unknown", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        type = type or ""
        if "PT" in type:
            return ModelTraining.PT
        if "FT" in type:
            return ModelTraining.FT
        if "IT" in type:
            return ModelTraining.IT
        return ModelTraining.NK


class MalteseTraining(Enum):
    NO = ModelDetails(name="none", symbol="NO")
    PT = ModelDetails(name="pre-training", symbol="PT")
    FT = ModelDetails(name="fine-tuning", symbol="FT")
    IT = ModelDetails(name="instruction-tuning", symbol="IT")
    NK = ModelDetails(name="unknown", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        type = type or ""
        if "NO" in type:
            return MalteseTraining.NO
        if "PT" in type:
            return MalteseTraining.PT
        if "FT" in type:
            return MalteseTraining.FT
        if "IT" in type:
            return MalteseTraining.IT
        return MalteseTraining.NK

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class Precision(Enum):
    float32 = ModelDetails("float32")
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float32", "float32"]:
            return Precision.float32
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]