File size: 1,056 Bytes
8b1f7a0 3b3db42 8b1f7a0 01ea22b 236bb17 0df3db8 236bb17 01ea22b 8b1f7a0 1b780de 236bb17 1b780de 8b1f7a0 01ea22b 236bb17 29efd58 2a860f6 29efd58 01ea22b 8b1f7a0 29546b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import os
from huggingface_hub import HfApi
# Info to change for your repository
# ----------------------------------
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
PROMPT_VERSIONS = [version.strip() for version in
os.environ.get("PROMPT_VERSIONS", "1.0_english,1.0_maltese").split(",")]
OWNER = "MLRS" # Change to your org - don't forget to create a results and request dataset, with the correct format!
# ----------------------------------
REPO_ID = f"{OWNER}/MELABench"
QUEUE_REPO = f"{OWNER}/MELABench_requests"
PREDICTIONS_REPO = f"{OWNER}/MELABench_predictions"
RESULTS_REPO = f"{OWNER}/MELABench_results"
# If you setup a cache later, just change HF_HOME
CACHE_PATH = os.getenv("HF_HOME", ".")
# Local caches
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
API = HfApi(token=TOKEN)
|