File size: 10,567 Bytes
3b3db42
8b1f7a0
3b3db42
2caaddf
8b1f7a0
236bb17
8b1f7a0
 
 
 
236bb17
2caaddf
 
8b1f7a0
 
 
 
5fe3b95
 
1ba1924
 
2caaddf
8b1f7a0
1ba1924
8b1f7a0
3d8dbe8
236bb17
 
 
 
2caaddf
236bb17
3d8dbe8
4f3c2a8
8b1f7a0
 
 
1ba1924
8b1f7a0
 
 
236bb17
1ba1924
236bb17
8b1f7a0
 
4f3c2a8
3d8dbe8
8b1f7a0
236bb17
 
 
 
 
2caaddf
236bb17
2caaddf
236bb17
 
 
2caaddf
 
 
8b1f7a0
236bb17
8b1f7a0
c875275
8b1f7a0
1b780de
 
236bb17
 
 
 
f171a05
 
 
4f3c2a8
f171a05
c875275
1ba1924
 
 
 
 
1b780de
 
 
 
f171a05
1b780de
 
 
 
 
 
8b1f7a0
 
236bb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b1f7a0
236bb17
 
 
 
 
 
 
8b1f7a0
 
 
c875275
8b1f7a0
 
 
236bb17
2caaddf
236bb17
 
1b780de
236bb17
 
 
8b1f7a0
1b780de
2caaddf
236bb17
1b780de
8b1f7a0
 
1ba1924
 
3d8dbe8
8b1f7a0
 
 
 
236bb17
3d8dbe8
8b1f7a0
 
 
ceb2102
8b1f7a0
01ea22b
8b1f7a0
 
1ba1924
8b1f7a0
 
 
3d8dbe8
236bb17
 
 
2caaddf
236bb17
 
3d8dbe8
1ba1924
8b1f7a0
 
 
 
 
 
 
 
 
2caaddf
8b1f7a0
236bb17
2caaddf
 
 
 
 
 
 
 
 
8b1f7a0
 
 
 
1ba1924
 
8b1f7a0
1ba1924
8b1f7a0
 
 
 
 
 
 
 
 
 
 
3d8dbe8
8b1f7a0
 
 
 
 
 
236bb17
1ba1924
236bb17
8b1f7a0
236bb17
 
 
 
8b1f7a0
 
236bb17
8b1f7a0
236bb17
8b1f7a0
 
 
 
 
 
 
 
 
 
 
ceb2102
 
3b3db42
8b1f7a0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import glob
import json
import os
from collections import defaultdict
from dataclasses import dataclass
from pathlib import Path

import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelTraining, Tasks, Precision, WeightType, MalteseTraining
from src.envs import TOKEN, API
from src.submission.check_validity import is_model_on_hub, get_model_size


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    n_shot: int = 0
    prompt_version: str = "1.0_english"
    seed: int = 0
    model_training: ModelTraining = ModelTraining.NK # Pretrained, fine tuned, ...
    maltese_training: MalteseTraining = MalteseTraining.NK # none, pre-training, ...
    language_count: int = None
    weight_type: WeightType = WeightType.Original # Original or Adapter
    architecture: str = "Unknown" 
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = "" # submission date of request file
    still_on_hub: bool = False

    @classmethod
    def init_from_json_files(self, seed_directory):
        """Inits the result from the specific model result file"""
        with open(list(seed_directory.values())[0][0]) as fp:
            data = json.load(fp)

        config = data.get("config")
        precision = Precision.from_str(config.get("model_dtype"))

        n_shot = config.get("n_shot")

        prompt_version = config.get("prompt_version")

        seed = config.get("seed")

        model_training = ModelTraining.from_str(config.get("model_training"))

        maltese_training = MalteseTraining.from_str(config.get("maltese_training"))

        language_count = config.get("language_count")

        model_size = config.get("model_num_parameters")

        # Get model and org
        org_and_model = config.get("model", None)
        org_and_model = org_and_model.split("/", 1)
        full_model = "/".join(org_and_model)

        revision = config.get("model_sha", config.get("model_revision", "main"))

        model_args = config.get("model_args")
        model_args["revision"] = revision
        model_args["trust_remote_code"] = True
        model_args["cache_dir"] = None
        base_model = None
        if "pretrained" in model_args:
            base_model = model_args.pop("pretrained")
        still_on_hub, _, model_config = is_model_on_hub(
            base_model or full_model, model_args, test_tokenizer=False, token=TOKEN,
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)
        license = "?"
        likes = 0
        if still_on_hub:
            try:
                model_info = API.model_info(repo_id=full_model, revision=revision, token=TOKEN)
                if not model_size:
                    model_size = get_model_size(model_info=model_info, precision=precision)
                license = model_info.cardData.get("license")
                likes = model_info.likes
            except Exception:
                pass

        # Extract results available in this file (some results are split in several files)
        results = defaultdict(dict)
        for seed, file_paths in seed_directory.items():
            for file_path in file_paths:
                with open(file_path) as file:
                    data = json.load(file)["results"]

                for task in Tasks:
                    task = task.value
                    if task.benchmark not in data or task.metric not in data[task.benchmark]:
                        continue
                    score = data[task.benchmark][task.metric]
                    if task.metric in ("accuracy", "f1", "loglikelihood", "rouge"):
                        score *= 100
                    results[task.benchmark + "_" + task.metric][seed] = score

        results = {task: np.mean(list(seed_results.values())) for task, seed_results in results.items()}

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
        else:
            org = org_and_model[0]
            model = org_and_model[1]
        result_key = f"{'_'.join(org_and_model)}_{revision}_{precision.value.name}_{n_shot}_{prompt_version}_{seed}"

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            model_training=model_training,
            maltese_training=maltese_training,
            language_count=language_count or "?",
            precision=precision,
            revision=revision,
            n_shot=n_shot,
            prompt_version=prompt_version,
            seed=seed,
            still_on_hub=still_on_hub,
            architecture=architecture,
            likes=likes or "?",
            num_params=model_size and round(model_size / 1e9, 3),
            license=license,
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_training = ModelTraining.from_str(request.get("model_training", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.n_shot.name: self.n_shot,
            AutoEvalColumn.prompt_version.name: self.prompt_version,
            AutoEvalColumn.model_training.name: self.model_training.value.name,
            AutoEvalColumn.maltese_training.name: self.maltese_training.value.name,
            AutoEvalColumn.model_symbol.name: self.model_training.value.symbol + "/" + self.maltese_training.value.symbol,
            AutoEvalColumn.language_count.name: self.language_count,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        results_by_task_type = defaultdict(list)
        for task in Tasks:
            result = self.results.get(task.value.benchmark + "_" + task.value.metric)
            data_dict[task.value.col_name] = result
            if task.value.is_primary_metric:
                results_by_task_type[task.value.task_type].append(result)
        results_averages = []
        for task_type, task_type_results in results_by_task_type.items():
            average = sum([score for score in task_type_results if score is not None]) / len(task_type_results)
            data_dict[getattr(AutoEvalColumn, task_type.value.name).name] = average
            results_averages.append(average)
        data_dict[AutoEvalColumn.average.name] = np.mean(results_averages) if len(results_averages) > 1 else results_averages[0]

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                req_content["status"] in ["FINISHED"]
                and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = defaultdict(lambda: defaultdict(list))

    for directory_path in Path(results_path).rglob("*-shot/*/*/"):
        for file_path in directory_path.rglob("*-seed/results_*.json"):
            seed = file_path.parent.name.removesuffix("-seed")
            model_result_filepaths[directory_path.relative_to(results_path)][seed].append(file_path)

    eval_results = {}
    for model_result_filepath in model_result_filepaths.values():
        # Creation of result
        eval_result = EvalResult.init_from_json_files(model_result_filepath)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results