ACL 2025 paper citation.
Browse files- README.md +2 -0
- app.py +1 -1
- src/about.py +59 -22
README.md
CHANGED
@@ -7,6 +7,8 @@ sdk: gradio
|
|
7 |
app_file: app.py
|
8 |
pinned: true
|
9 |
license: apache-2.0
|
|
|
|
|
10 |
short_description: Evaluation of language models on Maltese tasks
|
11 |
sdk_version: 5.19.0
|
12 |
---
|
|
|
7 |
app_file: app.py
|
8 |
pinned: true
|
9 |
license: apache-2.0
|
10 |
+
tags:
|
11 |
+
- leaderboard
|
12 |
short_description: Evaluation of language models on Maltese tasks
|
13 |
sdk_version: 5.19.0
|
14 |
---
|
app.py
CHANGED
@@ -100,7 +100,7 @@ def init_leaderboard(dataframe):
|
|
100 |
demo = gr.Blocks(css=custom_css)
|
101 |
with demo:
|
102 |
gr.HTML(TITLE)
|
103 |
-
gr.
|
104 |
|
105 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
106 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
|
|
100 |
demo = gr.Blocks(css=custom_css)
|
101 |
with demo:
|
102 |
gr.HTML(TITLE)
|
103 |
+
gr.HTML(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
104 |
|
105 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
106 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
src/about.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
@@ -18,6 +20,7 @@ class Task:
|
|
18 |
benchmark: str
|
19 |
metric: str
|
20 |
col_name: str
|
|
|
21 |
task_type: TaskType
|
22 |
is_primary_metric: bool = True
|
23 |
|
@@ -26,22 +29,22 @@ class Task:
|
|
26 |
# ---------------------------------------------------
|
27 |
class Tasks(Enum):
|
28 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
29 |
-
task0 = Task("sentiment_mlt", "f1", "Sentiment Analysis (F1)", TaskType.NLU)
|
30 |
-
task1 = Task("sib200_mlt", "f1", "SIB200 (F1)", TaskType.NLU)
|
31 |
-
task2 = Task("taxi1500_mlt", "f1", "Taxi1500 (F1)", TaskType.NLU)
|
32 |
-
task3 = Task("maltese_news_categories", "loglikelihood", "Maltese News Categories (F1)", TaskType.NLU)
|
33 |
-
task4 = Task("multieurlex_mlt", "loglikelihood", "MultiEURLEX (F1)", TaskType.NLU)
|
34 |
-
task5 = Task("belebele_mlt", "acc", "Belebele (Accuracy)", TaskType.NLU)
|
35 |
-
task6 = Task("opus100_eng-mlt", "bleu", "OPUS-100 EN→MT (BLEU)", TaskType.NLG, False)
|
36 |
-
task7 = Task("opus100_eng-mlt", "chrf", "OPUS-100 EN→MT (ChrF)", TaskType.NLG)
|
37 |
-
task8 = Task("flores200_eng-mlt", "bleu", "Flores-200 EN→MT (BLEU)", TaskType.NLG, False)
|
38 |
-
task9 = Task("flores200_eng-mlt", "chrf", "Flores-200 EN→MT (ChrF)", TaskType.NLG)
|
39 |
-
task10 = Task("webnlg_mlt", "chrf", "WebNLG (ChrF)", TaskType.NLG)
|
40 |
-
task11 = Task("webnlg_mlt", "rouge", "WebNLG (Rouge-L)", TaskType.NLG, False)
|
41 |
-
task12 = Task("eurlexsum_mlt", "chrf", "EUR-Lex-Sum (ChrF)", TaskType.NLG, False)
|
42 |
-
task13 = Task("eurlexsum_mlt", "rouge", "EUR-Lex-Sum (Rouge-L)", TaskType.NLG)
|
43 |
-
task14 = Task("maltese_news_headlines", "chrf", "Maltese News Headlines (ChrF)", TaskType.NLG, False)
|
44 |
-
task15 = Task("maltese_news_headlines", "rouge", "Maltese News Headlines (Rouge-L)", TaskType.NLG)
|
45 |
|
46 |
NUM_FEWSHOT = 0 # Change with your few shot
|
47 |
# ---------------------------------------------------
|
@@ -49,20 +52,36 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
49 |
|
50 |
|
51 |
# Your leaderboard name
|
52 |
-
TITLE = """
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# What does your leaderboard evaluate?
|
55 |
INTRODUCTION_TEXT = """
|
56 |
-
A Maltese Evaluation Language Benchmark
|
57 |
"""
|
58 |
|
59 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
|
|
|
|
|
60 |
LLM_BENCHMARKS_TEXT = f"""
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
|
|
66 |
"""
|
67 |
|
68 |
EVALUATION_QUEUE_TEXT = """
|
@@ -73,4 +92,22 @@ In addition, we ask for additional metadata about model training.
|
|
73 |
|
74 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
75 |
CITATION_BUTTON_TEXT = r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
"""
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
from dataclasses import dataclass
|
4 |
from enum import Enum
|
5 |
|
|
|
20 |
benchmark: str
|
21 |
metric: str
|
22 |
col_name: str
|
23 |
+
url: str
|
24 |
task_type: TaskType
|
25 |
is_primary_metric: bool = True
|
26 |
|
|
|
29 |
# ---------------------------------------------------
|
30 |
class Tasks(Enum):
|
31 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
32 |
+
task0 = Task("sentiment_mlt", "f1", "Sentiment Analysis (F1)", "https://github.com/jerbarnes/typology_of_crosslingual/tree/master/data/sentiment/mt", TaskType.NLU)
|
33 |
+
task1 = Task("sib200_mlt", "f1", "SIB200 (F1)", "https://huggingface.co/datasets/Davlan/sib200/viewer/mlt_Latn", TaskType.NLU)
|
34 |
+
task2 = Task("taxi1500_mlt", "f1", "Taxi1500 (F1)", "https://github.com/cisnlp/Taxi1500", TaskType.NLU)
|
35 |
+
task3 = Task("maltese_news_categories", "loglikelihood", "Maltese News Categories (F1)", "https://huggingface.co/datasets/MLRS/maltese_news_categories", TaskType.NLU)
|
36 |
+
task4 = Task("multieurlex_mlt", "loglikelihood", "MultiEURLEX (F1)", "https://huggingface.co/datasets/nlpaueb/multi_eurlex", TaskType.NLU)
|
37 |
+
task5 = Task("belebele_mlt", "acc", "Belebele (Accuracy)", "https://huggingface.co/datasets/facebook/belebele/viewer/mlt_Latn", TaskType.NLU)
|
38 |
+
task6 = Task("opus100_eng-mlt", "bleu", "OPUS-100 EN→MT (BLEU)", "https://huggingface.co/datasets/MLRS/OPUS-MT-EN-Fixed", TaskType.NLG, False)
|
39 |
+
task7 = Task("opus100_eng-mlt", "chrf", "OPUS-100 EN→MT (ChrF)", "https://huggingface.co/datasets/MLRS/OPUS-MT-EN-Fixed", TaskType.NLG)
|
40 |
+
task8 = Task("flores200_eng-mlt", "bleu", "Flores-200 EN→MT (BLEU)", "https://huggingface.co/datasets/Muennighoff/flores200", TaskType.NLG, False)
|
41 |
+
task9 = Task("flores200_eng-mlt", "chrf", "Flores-200 EN→MT (ChrF)", "https://huggingface.co/datasets/Muennighoff/flores200", TaskType.NLG)
|
42 |
+
task10 = Task("webnlg_mlt", "chrf", "WebNLG (ChrF)", "https://synalp.gitlabpages.inria.fr/webnlg-challenge/challenge_2023/", TaskType.NLG)
|
43 |
+
task11 = Task("webnlg_mlt", "rouge", "WebNLG (Rouge-L)", "https://synalp.gitlabpages.inria.fr/webnlg-challenge/challenge_2023/", TaskType.NLG, False)
|
44 |
+
task12 = Task("eurlexsum_mlt", "chrf", "EUR-Lex-Sum (ChrF)", "https://huggingface.co/datasets/dennlinger/eur-lex-sum", TaskType.NLG, False)
|
45 |
+
task13 = Task("eurlexsum_mlt", "rouge", "EUR-Lex-Sum (Rouge-L)", "https://huggingface.co/datasets/dennlinger/eur-lex-sum", TaskType.NLG)
|
46 |
+
task14 = Task("maltese_news_headlines", "chrf", "Maltese News Headlines (ChrF)", "https://huggingface.co/datasets/MLRS/maltese_news_headlines", TaskType.NLG, False)
|
47 |
+
task15 = Task("maltese_news_headlines", "rouge", "Maltese News Headlines (Rouge-L)", "https://huggingface.co/datasets/MLRS/maltese_news_headlines", TaskType.NLG)
|
48 |
|
49 |
NUM_FEWSHOT = 0 # Change with your few shot
|
50 |
# ---------------------------------------------------
|
|
|
52 |
|
53 |
|
54 |
# Your leaderboard name
|
55 |
+
TITLE = """
|
56 |
+
<h1 align="center" id="space-title">
|
57 |
+
<img src="https://raw.githubusercontent.com/MLRS/MELABench/refs/heads/main/logo.jpg" alt="MELABench logo" width="200px">
|
58 |
+
Leaderboard
|
59 |
+
</h1>
|
60 |
+
"""
|
61 |
|
62 |
# What does your leaderboard evaluate?
|
63 |
INTRODUCTION_TEXT = """
|
64 |
+
<p align="center">A Maltese Evaluation Language Benchmark 🇲🇹</p>
|
65 |
"""
|
66 |
|
67 |
# Which evaluations are you running? how can people reproduce what you have?
|
68 |
+
tasks = {task_type.value.display_name: {} for task_type in TaskType}
|
69 |
+
for task in Tasks:
|
70 |
+
tasks[task.value.task_type.value.display_name][re.sub(r" \(.*\)$", "", task.value.col_name)] = task.value.url
|
71 |
LLM_BENCHMARKS_TEXT = f"""
|
72 |
+
MELABench evaluates language model capabilities on Maltese.
|
73 |
+
Currently, the following tasks are supported:
|
74 |
+
""" + \
|
75 |
+
"\n".join([
|
76 |
+
f"- {task_type}:\n" + "\n".join(f" - [{task}]({url})" for task, url in sub_tasks.items()) + "\n"
|
77 |
+
for task_type, sub_tasks in tasks.items()
|
78 |
+
]) + \
|
79 |
+
"""
|
80 |
+
The leaderboard is developed and maintained by people managing [MLRS](https://mlrs.research.um.edu.mt/).
|
81 |
+
We plan to expand our initial work with more tasks, if you would like to contribute your data, please reach out!
|
82 |
+
If you would like to include results for models/setups we did not include, we also accept submissions.
|
83 |
|
84 |
+
This work was introduced in [MELABenchv1: Benchmarking Large Language Models against Smaller Fine-Tuned Models for Low-Resource Maltese NLP](https://arxiv.org/abs/2506.04385).
|
85 |
"""
|
86 |
|
87 |
EVALUATION_QUEUE_TEXT = """
|
|
|
92 |
|
93 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
94 |
CITATION_BUTTON_TEXT = r"""
|
95 |
+
@inproceedings{micallef-borg-2025-melabenchv1,
|
96 |
+
title = "{MELAB}enchv1: Benchmarking Large Language Models against Smaller Fine-Tuned Models for Low-Resource {M}altese {NLP}",
|
97 |
+
author = "Micallef, Kurt and
|
98 |
+
Borg, Claudia",
|
99 |
+
editor = "Che, Wanxiang and
|
100 |
+
Nabende, Joyce and
|
101 |
+
Shutova, Ekaterina and
|
102 |
+
Pilehvar, Mohammad Taher",
|
103 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
|
104 |
+
month = jul,
|
105 |
+
year = "2025",
|
106 |
+
address = "Vienna, Austria",
|
107 |
+
publisher = "Association for Computational Linguistics",
|
108 |
+
url = "https://aclanthology.org/2025.findings-acl.1053/",
|
109 |
+
doi = "10.18653/v1/2025.findings-acl.1053",
|
110 |
+
pages = "20505--20527",
|
111 |
+
ISBN = "979-8-89176-256-5",
|
112 |
+
}
|
113 |
"""
|