import glob import json import os from collections import defaultdict from dataclasses import dataclass from pathlib import Path import numpy as np from src.display.formatting import make_clickable_model from src.display.utils import AutoEvalColumn, ModelTraining, Tasks, Precision, WeightType, MalteseTraining from src.envs import TOKEN, API from src.submission.check_validity import is_model_on_hub, get_model_size @dataclass class EvalResult: """Represents one full evaluation. Built from a combination of the result and request file for a given run. """ eval_name: str # org_model_precision (uid) full_model: str # org/model (path on hub) org: str model: str revision: str # commit hash, "" if main results: dict precision: Precision = Precision.Unknown n_shot: int = 0 prompt_version: str = "1.0_english" seed: int = 0 model_training: ModelTraining = ModelTraining.NK # Pretrained, fine tuned, ... maltese_training: MalteseTraining = MalteseTraining.NK # none, pre-training, ... language_count: int = None weight_type: WeightType = WeightType.Original # Original or Adapter architecture: str = "Unknown" license: str = "?" likes: int = 0 num_params: int = 0 date: str = "" # submission date of request file still_on_hub: bool = False @classmethod def init_from_json_files(self, seed_directory): """Inits the result from the specific model result file""" with open(list(seed_directory.values())[0][0]) as fp: data = json.load(fp) config = data.get("config") precision = Precision.from_str(config.get("model_dtype")) n_shot = config.get("n_shot") prompt_version = config.get("prompt_version") seed = config.get("seed") model_training = ModelTraining.from_str(config.get("model_training")) maltese_training = MalteseTraining.from_str(config.get("maltese_training")) language_count = config.get("language_count") model_size = config.get("model_num_parameters") # Get model and org org_and_model = config.get("model", None) org_and_model = org_and_model.split("/", 1) full_model = "/".join(org_and_model) revision = config.get("model_sha", config.get("model_revision", "main")) model_args = config.get("model_args") model_args["revision"] = revision model_args["trust_remote_code"] = True model_args["cache_dir"] = None base_model = None if "pretrained" in model_args: base_model = model_args.pop("pretrained") still_on_hub, _, model_config = is_model_on_hub( base_model or full_model, model_args, test_tokenizer=False, token=TOKEN, ) architecture = "?" if model_config is not None: architectures = getattr(model_config, "architectures", None) if architectures: architecture = ";".join(architectures) license = "?" likes = 0 if still_on_hub: try: model_info = API.model_info(repo_id=full_model, revision=revision, token=TOKEN) if not model_size: model_size = get_model_size(model_info=model_info, precision=precision) license = model_info.cardData.get("license") likes = model_info.likes except Exception: pass # Extract results available in this file (some results are split in several files) results = defaultdict(dict) for seed, file_paths in seed_directory.items(): for file_path in file_paths: with open(file_path) as file: data = json.load(file)["results"] for task in Tasks: task = task.value if task.benchmark not in data or task.metric not in data[task.benchmark]: continue score = data[task.benchmark][task.metric] if task.metric in ("accuracy", "f1", "loglikelihood", "rouge"): score *= 100 results[task.benchmark + "_" + task.metric][seed] = score results = {task: np.mean(list(seed_results.values())) for task, seed_results in results.items()} if len(org_and_model) == 1: org = None model = org_and_model[0] else: org = org_and_model[0] model = org_and_model[1] result_key = f"{'_'.join(org_and_model)}_{revision}_{precision.value.name}_{n_shot}_{prompt_version}_{seed}" return self( eval_name=result_key, full_model=full_model, org=org, model=model, results=results, model_training=model_training, maltese_training=maltese_training, language_count=language_count or "?", precision=precision, revision=revision, n_shot=n_shot, prompt_version=prompt_version, seed=seed, still_on_hub=still_on_hub, architecture=architecture, likes=likes or "?", num_params=model_size and round(model_size / 1e9, 3), license=license, ) def update_with_request_file(self, requests_path): """Finds the relevant request file for the current model and updates info with it""" request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) try: with open(request_file, "r") as f: request = json.load(f) self.model_training = ModelTraining.from_str(request.get("model_training", "")) self.weight_type = WeightType[request.get("weight_type", "Original")] self.license = request.get("license", "?") self.likes = request.get("likes", 0) self.num_params = request.get("params", 0) self.date = request.get("submitted_time", "") except Exception: print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}") def to_dict(self): """Converts the Eval Result to a dict compatible with our dataframe display""" average = sum([v for v in self.results.values() if v is not None]) / len(Tasks) data_dict = { "eval_name": self.eval_name, # not a column, just a save name, AutoEvalColumn.precision.name: self.precision.value.name, AutoEvalColumn.n_shot.name: self.n_shot, AutoEvalColumn.prompt_version.name: self.prompt_version, AutoEvalColumn.model_training.name: self.model_training.value.name, AutoEvalColumn.maltese_training.name: self.maltese_training.value.name, AutoEvalColumn.model_symbol.name: self.model_training.value.symbol + "/" + self.maltese_training.value.symbol, AutoEvalColumn.language_count.name: self.language_count, AutoEvalColumn.weight_type.name: self.weight_type.value.name, AutoEvalColumn.architecture.name: self.architecture, AutoEvalColumn.model.name: make_clickable_model(self.full_model), AutoEvalColumn.revision.name: self.revision, AutoEvalColumn.average.name: average, AutoEvalColumn.license.name: self.license, AutoEvalColumn.likes.name: self.likes, AutoEvalColumn.params.name: self.num_params, AutoEvalColumn.still_on_hub.name: self.still_on_hub, } results_by_task_type = defaultdict(list) for task in Tasks: result = self.results.get(task.value.benchmark + "_" + task.value.metric) data_dict[task.value.col_name] = result if task.value.is_primary_metric: results_by_task_type[task.value.task_type].append(result) results_averages = [] for task_type, task_type_results in results_by_task_type.items(): average = sum([score for score in task_type_results if score is not None]) / len(task_type_results) data_dict[getattr(AutoEvalColumn, task_type.value.name).name] = average results_averages.append(average) data_dict[AutoEvalColumn.average.name] = np.mean(results_averages) if len(results_averages) > 1 else results_averages[0] return data_dict def get_request_file_for_model(requests_path, model_name, precision): """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" request_files = os.path.join( requests_path, f"{model_name}_eval_request_*.json", ) request_files = glob.glob(request_files) # Select correct request file (precision) request_file = "" request_files = sorted(request_files, reverse=True) for tmp_request_file in request_files: with open(tmp_request_file, "r") as f: req_content = json.load(f) if ( req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1] ): request_file = tmp_request_file return request_file def get_raw_eval_results(results_path: str) -> list[EvalResult]: """From the path of the results folder root, extract all needed info for results""" model_result_filepaths = defaultdict(lambda: defaultdict(list)) for directory_path in Path(results_path).rglob("*-shot/*/*/"): for file_path in directory_path.rglob("*-seed/results_*.json"): seed = file_path.parent.name.removesuffix("-seed") model_result_filepaths[directory_path.relative_to(results_path)][seed].append(file_path) eval_results = {} for model_result_filepath in model_result_filepaths.values(): # Creation of result eval_result = EvalResult.init_from_json_files(model_result_filepath) # Store results of same eval together eval_name = eval_result.eval_name if eval_name in eval_results.keys(): eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) else: eval_results[eval_name] = eval_result results = [] for v in eval_results.values(): try: v.to_dict() # we test if the dict version is complete results.append(v) except KeyError: # not all eval values present continue return results