import json import os from typing import Any import huggingface_hub from huggingface_hub import ModelCard from huggingface_hub.hf_api import ModelInfo from transformers import AutoConfig from transformers.models.auto.tokenization_auto import AutoTokenizer def check_model_card(repo_id: str) -> tuple[bool, str]: """Checks if the model card and license exist and have been filled""" try: card = ModelCard.load(repo_id) except huggingface_hub.utils.EntryNotFoundError: return False, "Please add a model card to your model to explain how you trained/fine-tuned it." # Enforce license metadata if card.data.license is None: if not ("license_name" in card.data and "license_link" in card.data): return False, ( "License not found. Please add a license to your model card using the `license` metadata or a" " `license_name`/`license_link` pair." ) # Enforce card content if len(card.text) < 200: return False, "Please add a description to your model card, it is too short." return True, "" def is_model_on_hub(model_name: str, model_args: dict = None, token: str = None, test_tokenizer=False) -> tuple[bool, str, Any]: """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" model_args = model_args or {} try: config = AutoConfig.from_pretrained(model_name, token=token, **model_args) if test_tokenizer: try: tk = AutoTokenizer.from_pretrained(model_name, token=token, **model_args) except ValueError as e: return ( False, f"uses a tokenizer which is not in a transformers release: {e}", None ) except Exception as e: return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None) return True, None, config except ValueError: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", None ) except Exception as e: return False, "was not found on hub!", None def get_model_size(model_info: ModelInfo, precision: str): """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" try: model_size = model_info.safetensors["total"] except (AttributeError, TypeError): return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 model_size = size_factor * model_size return model_size def get_model_arch(model_info: ModelInfo): """Gets the model architecture from the configuration""" return model_info.config.get("architectures", "Unknown") def get_model_properties(configuration: dict) -> tuple[str, str, str, int, str, int]: model_name = configuration["model_name_sanitized"] revision = configuration["config"]["model_revision"] precision = configuration["config"]["model_dtype"].split(".")[-1] seed = configuration["config"]["random_seed"] n_shot = list(configuration["n-shot"].values())[0] prompt_version = list(configuration["versions"].values())[0] return model_name, revision, precision, seed, prompt_version, n_shot def already_submitted_models(requested_models_dir: str) -> set[str]: """Gather a list of already submitted models to avoid duplicates""" depth = 1 run_names = [] for root, _, files in os.walk(requested_models_dir): current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) if current_depth == depth: for file in files: if not file.endswith(".json"): continue with open(os.path.join(root, file), "r") as f: info = json.load(f) properties = get_model_properties(info) run_names.append("_".join([str(property) for property in properties])) return set(run_names)