Spaces:
Runtime error
Runtime error
| # Copyright 2021 AlQuraishi Laboratory | |
| # Copyright 2021 DeepMind Technologies Limited | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from functools import partialmethod, partial | |
| import math | |
| from typing import Optional, List | |
| import torch | |
| import torch.nn as nn | |
| from dockformer.model.primitives import Linear, LayerNorm, Attention | |
| from dockformer.utils.tensor_utils import permute_final_dims | |
| class TriangleAttention(nn.Module): | |
| def __init__( | |
| self, c_in, c_hidden, no_heads, starting=True, inf=1e9 | |
| ): | |
| """ | |
| Args: | |
| c_in: | |
| Input channel dimension | |
| c_hidden: | |
| Overall hidden channel dimension (not per-head) | |
| no_heads: | |
| Number of attention heads | |
| """ | |
| super(TriangleAttention, self).__init__() | |
| self.c_in = c_in | |
| self.c_hidden = c_hidden | |
| self.no_heads = no_heads | |
| self.starting = starting | |
| self.inf = inf | |
| self.layer_norm = LayerNorm(self.c_in) | |
| self.linear = Linear(c_in, self.no_heads, bias=False, init="normal") | |
| self.mha = Attention( | |
| self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads | |
| ) | |
| def forward(self, | |
| x: torch.Tensor, | |
| mask: Optional[torch.Tensor] = None, | |
| use_memory_efficient_kernel: bool = False, | |
| use_lma: bool = False, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| x: | |
| [*, I, J, C_in] input tensor (e.g. the pair representation) | |
| Returns: | |
| [*, I, J, C_in] output tensor | |
| """ | |
| if mask is None: | |
| # [*, I, J] | |
| mask = x.new_ones( | |
| x.shape[:-1], | |
| ) | |
| if(not self.starting): | |
| x = x.transpose(-2, -3) | |
| mask = mask.transpose(-1, -2) | |
| # [*, I, J, C_in] | |
| x = self.layer_norm(x) | |
| # [*, I, 1, 1, J] | |
| mask_bias = (self.inf * (mask - 1))[..., :, None, None, :] | |
| # [*, H, I, J] | |
| triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1)) | |
| # [*, 1, H, I, J] | |
| triangle_bias = triangle_bias.unsqueeze(-4) | |
| biases = [mask_bias, triangle_bias] | |
| x = self.mha( | |
| q_x=x, | |
| kv_x=x, | |
| biases=biases, | |
| use_memory_efficient_kernel=use_memory_efficient_kernel, | |
| use_lma=use_lma | |
| ) | |
| if(not self.starting): | |
| x = x.transpose(-2, -3) | |
| return x | |