Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import gradio as gr | |
| import wave | |
| import numpy as np | |
| from io import BytesIO | |
| from huggingface_hub import hf_hub_download | |
| from piper import PiperVoice | |
| from transformers import pipeline | |
| import typing | |
| model_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro", filename="fa_IR-gyro-medium.onnx") | |
| config_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro", filename="fa_IR-gyro-medium.onnx.json") | |
| voice = PiperVoice.load(model_path, config_path) | |
| def synthesize_speech(text): | |
| # Create an in-memory buffer for the WAV file | |
| buffer = BytesIO() | |
| with wave.open(buffer, 'wb') as wav_file: | |
| wav_file.setframerate(voice.config.sample_rate) | |
| wav_file.setsampwidth(2) # 16-bit | |
| wav_file.setnchannels(1) # mono | |
| # Synthesize speech | |
| # eztext = preprocess_text(text) | |
| voice.synthesize(text, wav_file) | |
| # Convert buffer to NumPy array for Gradio output | |
| buffer.seek(0) | |
| audio_data = np.frombuffer(buffer.read(), dtype=np.int16) | |
| return audio_data.tobytes(), None | |
| # Using Gradio Blocks | |
| with gr.Blocks(theme=gr.themes.Base()) as blocks: | |
| gr.Markdown("# Persian Text to Speech Synthesizer") | |
| gr.Markdown("Enter text to synthesize it into speech using Piper With Persian gyro Model :") | |
| input_text = gr.Textbox(label=" ", rtl=True , text_align="right" ) | |
| output_audio = gr.Audio(label="Synthesized Speech", type="numpy") | |
| output_text = gr.Textbox(label="Output Text", visible=False, rtl=True) # This is the new text output component | |
| submit_button = gr.Button("Synthesize") | |
| submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio, output_text]) | |
| # Run the app | |
| blocks.launch() |