Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
-
import cv2
|
5 |
from PIL import Image
|
6 |
import io
|
|
|
7 |
|
8 |
# Load a pre-trained TensorFlow model (replace with your model path)
|
9 |
model = tf.keras.applications.MobileNetV2(weights="imagenet")
|
10 |
|
11 |
def preprocess_image(image):
|
12 |
img = np.array(image)
|
13 |
-
img =
|
14 |
img = tf.keras.applications.mobilenet_v2.preprocess_input(img)
|
15 |
return np.expand_dims(img, axis=0)
|
16 |
|
@@ -20,27 +20,21 @@ def classify_frame(frame):
|
|
20 |
decoded_predictions = tf.keras.applications.mobilenet_v2.decode_predictions(predictions, top=1)[0]
|
21 |
return decoded_predictions[0][1]
|
22 |
|
23 |
-
def process_video(
|
24 |
result = ""
|
25 |
-
|
26 |
-
|
27 |
-
frame_interval =
|
28 |
-
|
29 |
-
for i in range(0, frame_count, frame_interval):
|
30 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
31 |
-
ret, frame = cap.read()
|
32 |
-
if not ret:
|
33 |
-
break
|
34 |
|
35 |
-
|
36 |
-
|
|
|
37 |
label = classify_frame(image)
|
38 |
|
39 |
if "baseball" in label.lower():
|
40 |
result = "The runner is out"
|
41 |
break
|
42 |
|
43 |
-
cap.release()
|
44 |
if result == "":
|
45 |
result = "The runner is safe"
|
46 |
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
|
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
+
import moviepy.editor as mp
|
7 |
|
8 |
# Load a pre-trained TensorFlow model (replace with your model path)
|
9 |
model = tf.keras.applications.MobileNetV2(weights="imagenet")
|
10 |
|
11 |
def preprocess_image(image):
|
12 |
img = np.array(image)
|
13 |
+
img = tf.image.resize(img, (224, 224))
|
14 |
img = tf.keras.applications.mobilenet_v2.preprocess_input(img)
|
15 |
return np.expand_dims(img, axis=0)
|
16 |
|
|
|
20 |
decoded_predictions = tf.keras.applications.mobilenet_v2.decode_predictions(predictions, top=1)[0]
|
21 |
return decoded_predictions[0][1]
|
22 |
|
23 |
+
def process_video(video_file):
|
24 |
result = ""
|
25 |
+
video = mp.VideoFileClip(io.BytesIO(video_file.read()))
|
26 |
+
duration = int(video.duration)
|
27 |
+
frame_interval = duration // 10 # Analyze 10 frames evenly spaced throughout the video
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
for i in range(0, duration, frame_interval):
|
30 |
+
frame = video.get_frame(i)
|
31 |
+
image = Image.fromarray(frame)
|
32 |
label = classify_frame(image)
|
33 |
|
34 |
if "baseball" in label.lower():
|
35 |
result = "The runner is out"
|
36 |
break
|
37 |
|
|
|
38 |
if result == "":
|
39 |
result = "The runner is safe"
|
40 |
|