DSAproject / app.py
MQAnh's picture
Update app.py
1afeae1 verified
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten").to(device)
def ocr_infer(image):
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(device)
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Gradio UI
iface = gr.Interface(
fn=ocr_infer,
inputs=gr.Image(type="pil"),
outputs="text",
title="Image to Text (OCR) ver7",
description="Upload a handwritten or printed image to extract text using TrOCR."
)
iface.launch(share=True)