object-detection / helper.py
MSaadTariq's picture
Create helper.py
8371896 verified
raw
history blame
6.53 kB
import io
import matplotlib.pyplot as plt
import requests
import inflect
from PIL import Image
import torch
import numpy as np
def load_image_from_url(url):
return Image.open(requests.get(url, stream=True).raw)
def render_results_in_image(in_pil_img, in_results):
plt.figure(figsize=(16, 10))
plt.imshow(in_pil_img)
ax = plt.gca()
for prediction in in_results:
x, y = prediction['box']['xmin'], prediction['box']['ymin']
w = prediction['box']['xmax'] - prediction['box']['xmin']
h = prediction['box']['ymax'] - prediction['box']['ymin']
ax.add_patch(plt.Rectangle((x, y),
w,
h,
fill=False,
color="green",
linewidth=2))
ax.text(
x,
y,
f"{prediction['label']}: {round(prediction['score']*100, 1)}%",
color='red'
)
plt.axis("off")
# Save the modified image to a BytesIO object
img_buf = io.BytesIO()
plt.savefig(img_buf, format='png',
bbox_inches='tight',
pad_inches=0)
img_buf.seek(0)
modified_image = Image.open(img_buf)
# Close the plot to prevent it from being displayed
plt.close()
return modified_image
def summarize_predictions_natural_language(predictions):
summary = {}
p = inflect.engine()
for prediction in predictions:
label = prediction['label']
if label in summary:
summary[label] += 1
else:
summary[label] = 1
result_string = "In this image, there are "
for i, (label, count) in enumerate(summary.items()):
count_string = p.number_to_words(count)
result_string += f"{count_string} {label}"
if count > 1:
result_string += "s"
result_string += " "
if i == len(summary) - 2:
result_string += "and "
# Remove the trailing comma and space
result_string = result_string.rstrip(', ') + "."
return result_string
##### To ignore warnings #####
import warnings
import logging
from transformers import logging as hf_logging
def ignore_warnings():
# Ignore specific Python warnings
warnings.filterwarnings("ignore", message="Some weights of the model checkpoint")
warnings.filterwarnings("ignore", message="Could not find image processor class")
warnings.filterwarnings("ignore", message="The `max_size` parameter is deprecated")
# Adjust logging for libraries using the logging module
logging.basicConfig(level=logging.ERROR)
hf_logging.set_verbosity_error()
########
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3),
np.array([0.6])],
axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0),
w,
h, edgecolor='green',
facecolor=(0,0,0,0),
lw=2))
def show_boxes_on_image(raw_image, boxes):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
for box in boxes:
show_box(box, plt.gca())
plt.axis('on')
plt.show()
def show_points_on_image(raw_image, input_points, input_labels=None):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
input_points = np.array(input_points)
if input_labels is None:
labels = np.ones_like(input_points[:, 0])
else:
labels = np.array(input_labels)
show_points(input_points, labels, plt.gca())
plt.axis('on')
plt.show()
def show_points_and_boxes_on_image(raw_image,
boxes,
input_points,
input_labels=None):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
input_points = np.array(input_points)
if input_labels is None:
labels = np.ones_like(input_points[:, 0])
else:
labels = np.array(input_labels)
show_points(input_points, labels, plt.gca())
for box in boxes:
show_box(box, plt.gca())
plt.axis('on')
plt.show()
def show_points_and_boxes_on_image(raw_image,
boxes,
input_points,
input_labels=None):
plt.figure(figsize=(10,10))
plt.imshow(raw_image)
input_points = np.array(input_points)
if input_labels is None:
labels = np.ones_like(input_points[:, 0])
else:
labels = np.array(input_labels)
show_points(input_points, labels, plt.gca())
for box in boxes:
show_box(box, plt.gca())
plt.axis('on')
plt.show()
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0],
pos_points[:, 1],
color='green',
marker='*',
s=marker_size,
edgecolor='white',
linewidth=1.25)
ax.scatter(neg_points[:, 0],
neg_points[:, 1],
color='red',
marker='*',
s=marker_size,
edgecolor='white',
linewidth=1.25)
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
import io
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def show_mask_on_image(raw_image, mask, return_image=False):
if not isinstance(mask, torch.Tensor):
mask = torch.Tensor(mask)
if len(mask.shape) == 4:
mask = mask.squeeze()
fig, axes = plt.subplots(1, 1, figsize=(15, 15))
mask = mask.cpu().detach()
axes.imshow(np.array(raw_image))
show_mask(mask, axes)
axes.axis("off")
plt.show()
if return_image:
fig = plt.gcf()
return fig2img(fig)
def show_pipe_masks_on_image(raw_image, outputs):
plt.imshow(np.array(raw_image))
ax = plt.gca()
for mask in outputs["masks"]:
show_mask(mask, ax=ax, random_color=True)
plt.axis("off")
plt.show()