Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
import io | |
import matplotlib.pyplot as plt | |
import torch | |
from PIL import Image | |
def render_results_in_image(in_pil_img, in_results): | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(in_pil_img) | |
ax = plt.gca() | |
for prediction in in_results: | |
x, y = prediction['box']['xmin'], prediction['box']['ymin'] | |
w = prediction['box']['xmax'] - prediction['box']['xmin'] | |
h = prediction['box']['ymax'] - prediction['box']['ymin'] | |
ax.add_patch(plt.Rectangle((x, y), | |
w, | |
h, | |
fill=False, | |
color="green", | |
linewidth=2)) | |
ax.text( | |
x, | |
y, | |
f"{prediction['label']}: {round(prediction['score']*100, 1)}%", | |
color='red' | |
) | |
plt.axis("off") | |
# Save the modified image to a BytesIO object | |
img_buf = io.BytesIO() | |
plt.savefig(img_buf, format='png', | |
bbox_inches='tight', | |
pad_inches=0) | |
img_buf.seek(0) | |
modified_image = Image.open(img_buf) | |
# Close the plot to prevent it from being displayed | |
plt.close() | |
return modified_image | |
od_pipe = pipeline("object-detection", "facebook/detr-resnet-50") | |
import gradio as gr | |
def get_pipeline_prediction(pil_image): | |
#first get the pipeline output given the pil image | |
pipeline_output = od_pipe(pil_image) | |
#then process the image using the pipeline output | |
processed_image = render_results_in_image(pil_image, pipeline_output) | |
return processed_image | |
demo = gr.Interface( | |
fn= get_pipeline_prediction, | |
inputs=gr.Image(label="Input Image", | |
type="pil"), | |
outputs=gr.Image(label="Output Image with predictions", | |
type="pil"), | |
title="Object Detection API", | |
description="Just upload your image and let ObjectDetect API work its magic, revealing the objects waiting to be discovered" | |
) | |
demo.launch() |