Spaces:
Sleeping
Sleeping
multimodal
Browse files
README.md
CHANGED
@@ -1,128 +1,131 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
title:
|
4 |
sdk: gradio
|
5 |
-
emoji:
|
6 |
-
colorFrom:
|
7 |
-
colorTo:
|
8 |
short_description: The only secure and rational email phishing detector
|
9 |
---
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
- **Task Type:** Multilabel sequence classification
|
19 |
-
- **Framework:** Hugging Face Transformers
|
20 |
-
- **Fine-tuning:** 3 epochs using Trainer API
|
21 |
-
- **Input Length:** Maximum 512 tokens with truncation
|
22 |
-
- **Output Classes:** 4-class multilabel classification
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
- **Recall:** 99.58%
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
2. **Phishing URL** - Malicious web links
|
39 |
-
3. **Legitimate URL** - Safe web links
|
40 |
-
4. **Phishing Email** - Fraudulent email attempts
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
**Try EmailGuard instantly - no installation required!**
|
50 |
-
1. Visit our live demo on Hugging Face Spaces
|
51 |
-
2. Paste your email content or suspicious URL
|
52 |
-
3. Click "Analyze for Phishing"
|
53 |
-
4. Get instant results with confidence scores
|
54 |
|
55 |
-
###
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
cd EmailGuard
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
-
##
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
4. **Verify:** Always cross-check results through official channels
|
74 |
|
75 |
-
|
76 |
-
- Suspicious payment verification emails
|
77 |
-
- Unknown links from social media
|
78 |
-
- Urgent account security messages
|
79 |
-
- Prize/lottery notification emails
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
- Educational cybersecurity training
|
85 |
-
- Academic research projects
|
86 |
-
- Initial screening of suspicious content
|
87 |
-
- Learning about phishing patterns
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
- Combine with human judgment and expertise
|
94 |
-
|
95 |
-
## 🤝 Contact & Support
|
96 |
-
|
97 |
-
**Questions? Feedback? Collaboration?**
|
98 |
-
|
99 |
-
📧 **Email:** [email protected]
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
- Research partnership opportunities
|
106 |
|
107 |
-
##
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
|
116 |
-
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
123 |
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
|
128 |
-
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
title: EmailGuard2
|
4 |
sdk: gradio
|
5 |
+
emoji: 🌍
|
6 |
+
colorFrom: blue
|
7 |
+
colorTo: pink
|
8 |
short_description: The only secure and rational email phishing detector
|
9 |
---
|
10 |
+
# EmailGuard2 : Advanced Phishing Detection System
|
11 |
|
12 |
+
A multi-model ensemble system for detecting phishing attempts in emails, URLs, and text messages using AI and feature engineering.
|
13 |
|
14 |
+
## Features
|
15 |
|
16 |
+
- Multi-model ensemble prediction
|
17 |
+
- Advanced feature extraction and analysis
|
18 |
+
- Real-time phishing detection
|
19 |
+
- Web-based user interface
|
20 |
+
- Risk scoring and confidence reporting
|
21 |
+
- URL and email content analysis
|
22 |
|
23 |
+
## Installation
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
1. Clone the repository:
|
26 |
+
```bash
|
27 |
+
git clone <repository-url>
|
28 |
+
cd emailguard-phishing-detection
|
29 |
+
```
|
|
|
30 |
|
31 |
+
2. Install dependencies:
|
32 |
+
```bash
|
33 |
+
pip install -r requirements.txt
|
34 |
+
```
|
35 |
|
36 |
+
3. Run the application:
|
37 |
+
```bash
|
38 |
+
python app.py
|
39 |
+
```
|
40 |
|
41 |
+
4. Open your browser and go to `http://localhost:7860`
|
42 |
|
43 |
+
## Usage
|
|
|
|
|
|
|
44 |
|
45 |
+
1. Enter email content, URL, or suspicious text in the input field
|
46 |
+
2. Click "Advanced Analysis" to process the input
|
47 |
+
3. Review the results including risk level and confidence scores
|
48 |
|
49 |
+
## Models Used
|
50 |
|
51 |
+
- Primary: `cybersectony/phishing-email-detection-distilbert_v2.4.1`
|
52 |
+
- URL Specialist: Custom URL analysis model
|
53 |
+
- Feature Engine: Hand-crafted pattern detection rules
|
54 |
|
55 |
+
## Detection Features
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
### URL Analysis
|
58 |
+
- Suspicious domain detection
|
59 |
+
- Shortened URL identification
|
60 |
+
- Malicious link patterns
|
|
|
61 |
|
62 |
+
### Content Analysis
|
63 |
+
- Urgency keyword detection
|
64 |
+
- Money-related terms
|
65 |
+
- Personal information requests
|
66 |
+
- Spelling error patterns
|
67 |
+
- Excessive capitalization
|
68 |
|
69 |
+
### Risk Assessment
|
70 |
+
- HIGH RISK: Strong phishing indicators (>60% confidence)
|
71 |
+
- MEDIUM RISK: Suspicious patterns (30-60% confidence)
|
72 |
+
- LOW RISK: Appears legitimate (<30% confidence)
|
73 |
|
74 |
+
## System Requirements
|
75 |
|
76 |
+
- Python 3.8+
|
77 |
+
- 4GB+ RAM
|
78 |
+
- Internet connection (for initial model download)
|
|
|
79 |
|
80 |
+
## Technical Details
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
The system uses:
|
83 |
+
- PyTorch for deep learning models
|
84 |
+
- Transformers for NLP processing
|
85 |
+
- Gradio for web interface
|
86 |
+
- Custom ensemble voting mechanism
|
87 |
+
- Feature-based risk adjustment
|
88 |
|
89 |
+
## Example Inputs
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
**Phishing Example:**
|
92 |
+
```
|
93 |
+
URGENT: Your PayPal account has been limited! Verify immediately at http://paypal-security-check.suspicious.com/verify
|
94 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
**Legitimate Example:**
|
97 |
+
```
|
98 |
+
Hi Sarah, Thanks for the quarterly report. Let's discuss in tomorrow's meeting. Best, Mike
|
99 |
+
```
|
|
|
100 |
|
101 |
+
## Configuration
|
102 |
|
103 |
+
Model configuration in `app.py`:
|
104 |
+
```python
|
105 |
+
MODELS = {
|
106 |
+
"primary": "cybersectony/phishing-email-detection-distilbert_v2.4.1",
|
107 |
+
"url_specialist": "cybersectony/phishing-email-detection-distilbert_v2.4.1"
|
108 |
+
}
|
109 |
+
```
|
110 |
|
111 |
+
## Limitations
|
112 |
|
113 |
+
- This is an educational/research tool
|
114 |
+
- Always verify suspicious content through official channels
|
115 |
+
- May produce false positives/negatives
|
116 |
+
- Requires manual verification for critical decisions
|
117 |
|
118 |
+
## License
|
119 |
|
120 |
+
Apache2.0 License
|
121 |
|
122 |
+
## Contributing
|
123 |
|
124 |
+
1. Fork the repository
|
125 |
+
2. Create a feature branch
|
126 |
+
3. Make your changes
|
127 |
+
4. Submit a pull request
|
128 |
|
129 |
+
## Support
|
130 |
|
131 |
+
For issues and questions, please use the GitHub issue tracker.
|