Spaces:
Sleeping
Sleeping
first base model
Browse files
app.py
CHANGED
@@ -1,64 +1,183 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import os
|
5 |
|
6 |
+
# Model configuration
|
7 |
+
MODEL_NAME = "cybersectony/phishing-email-detection-distilbert_v2.4.1"
|
|
|
|
|
8 |
|
9 |
+
# Global variables for model and tokenizer
|
10 |
+
model = None
|
11 |
+
tokenizer = None
|
12 |
|
13 |
+
def load_model():
|
14 |
+
"""Load model and tokenizer once at startup"""
|
15 |
+
global model, tokenizer
|
16 |
+
try:
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
19 |
+
model.eval() # Set to evaluation mode
|
20 |
+
return True
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error loading model: {e}")
|
23 |
+
return False
|
24 |
|
25 |
+
def predict_phishing(text):
|
26 |
+
"""
|
27 |
+
Predict if email/URL is phishing or legitimate
|
28 |
+
"""
|
29 |
+
global model, tokenizer
|
30 |
+
|
31 |
+
if not text.strip():
|
32 |
+
return "Please enter some text to analyze", {}, ""
|
33 |
+
|
34 |
+
try:
|
35 |
+
# Tokenize input
|
36 |
+
inputs = tokenizer(
|
37 |
+
text,
|
38 |
+
return_tensors="pt",
|
39 |
+
truncation=True,
|
40 |
+
max_length=512,
|
41 |
+
padding=True
|
42 |
+
)
|
43 |
+
|
44 |
+
# Get prediction
|
45 |
+
with torch.no_grad():
|
46 |
+
outputs = model(**inputs)
|
47 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
48 |
+
|
49 |
+
# Get probabilities
|
50 |
+
probs = predictions[0].tolist()
|
51 |
+
|
52 |
+
# Label mapping
|
53 |
+
labels = {
|
54 |
+
"Legitimate Email": probs[0],
|
55 |
+
"Phishing URL": probs[1],
|
56 |
+
"Legitimate URL": probs[2],
|
57 |
+
"Phishing Email": probs[3] if len(probs) > 3 else 0
|
58 |
+
}
|
59 |
+
|
60 |
+
# Find highest probability
|
61 |
+
max_label = max(labels.items(), key=lambda x: x[1])
|
62 |
+
prediction = max_label[0]
|
63 |
+
confidence = max_label[1]
|
64 |
+
|
65 |
+
# Create confidence bar data
|
66 |
+
confidence_data = {label: f"{prob:.1%}" for label, prob in labels.items()}
|
67 |
+
|
68 |
+
# Risk assessment
|
69 |
+
if "Phishing" in prediction:
|
70 |
+
risk_level = "🚨 HIGH RISK - Potential Phishing Detected"
|
71 |
+
risk_color = "red"
|
72 |
+
else:
|
73 |
+
risk_level = "✅ LOW RISK - Appears Legitimate"
|
74 |
+
risk_color = "green"
|
75 |
+
|
76 |
+
# Format result
|
77 |
+
result = f"""
|
78 |
+
### {risk_level}
|
79 |
+
**Primary Classification:** {prediction}
|
80 |
+
**Confidence:** {confidence:.1%}
|
81 |
+
"""
|
82 |
+
|
83 |
+
return result, confidence_data, risk_color
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
return f"Error during prediction: {str(e)}", {}, "orange"
|
87 |
|
88 |
+
# Load model at startup
|
89 |
+
print("Loading model...")
|
90 |
+
model_loaded = load_model()
|
91 |
+
if not model_loaded:
|
92 |
+
print("Failed to load model!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Create Gradio interface
|
95 |
+
with gr.Blocks(
|
96 |
+
theme=gr.themes.Soft(),
|
97 |
+
title="Phishing Email & URL Detective",
|
98 |
+
css="""
|
99 |
+
.risk-high { color: #dc2626 !important; font-weight: bold; }
|
100 |
+
.risk-low { color: #16a34a !important; font-weight: bold; }
|
101 |
+
.main-container { max-width: 800px; margin: 0 auto; }
|
102 |
+
"""
|
103 |
+
) as demo:
|
104 |
+
|
105 |
+
gr.Markdown("""
|
106 |
+
# 🛡️ Phishing Detection System
|
107 |
+
**Instantly detect phishing emails and malicious URLs using AI**
|
108 |
+
|
109 |
+
Powered by DistilBERT • 99.58% Accuracy • Real-time Analysis
|
110 |
+
""")
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column(scale=2):
|
114 |
+
input_text = gr.Textbox(
|
115 |
+
label="📧 Email Content or URL",
|
116 |
+
placeholder="Paste suspicious email content or URL here...",
|
117 |
+
lines=8,
|
118 |
+
max_lines=15
|
119 |
+
)
|
120 |
+
|
121 |
+
analyze_btn = gr.Button(
|
122 |
+
"🔍 Analyze for Phishing",
|
123 |
+
variant="primary",
|
124 |
+
size="lg"
|
125 |
+
)
|
126 |
+
|
127 |
+
with gr.Column(scale=1):
|
128 |
+
result_output = gr.Markdown(label="Analysis Result")
|
129 |
+
|
130 |
+
confidence_output = gr.Label(
|
131 |
+
label="Confidence Breakdown",
|
132 |
+
num_top_classes=4
|
133 |
+
)
|
134 |
+
|
135 |
+
# Example inputs
|
136 |
+
gr.Markdown("### 📋 Try These Examples:")
|
137 |
+
|
138 |
+
examples = [
|
139 |
+
["Dear User, Your account will be suspended! Click here immediately: http://fake-bank-login.com/urgent"],
|
140 |
+
["Hi Mufasa, Thanks for your email. The quarterly report is attached. Best regards, Simba"],
|
141 |
+
["URGENT: Verify your PayPal account now or lose access: https://paypal-security-verify.suspicious.com"],
|
142 |
+
["Meeting reminder: Project sync at 3 PM in conference room B. See you there!"]
|
143 |
+
]
|
144 |
+
|
145 |
+
gr.Examples(
|
146 |
+
examples=examples,
|
147 |
+
inputs=input_text,
|
148 |
+
outputs=[result_output, confidence_output]
|
149 |
+
)
|
150 |
+
|
151 |
+
# Event handlers
|
152 |
+
analyze_btn.click(
|
153 |
+
fn=predict_phishing,
|
154 |
+
inputs=input_text,
|
155 |
+
outputs=[result_output, confidence_output, gr.State()]
|
156 |
+
)
|
157 |
+
|
158 |
+
input_text.submit(
|
159 |
+
fn=predict_phishing,
|
160 |
+
inputs=input_text,
|
161 |
+
outputs=[result_output, confidence_output, gr.State()]
|
162 |
+
)
|
163 |
+
|
164 |
+
gr.Markdown("""
|
165 |
+
---
|
166 |
+
### ℹ️ About This Tool and the team.
|
167 |
+
- **Model:** DistilBERT fine-tuned for phishing detection
|
168 |
+
- **Accuracy:** 99.58% on test dataset
|
169 |
+
- **Speed:** Real-time analysis
|
170 |
+
- **Privacy:** All processing happens locally, no data stored
|
171 |
+
|
172 |
+
**⚠️ Disclaimer:** This tool is for educational purposes (Assignemnt) only, we currently hold no rights and responsibility to this tool. So please Always verify suspicious content through official channels.
|
173 |
+
""")
|
174 |
|
175 |
+
# Launch configuration
|
176 |
if __name__ == "__main__":
|
177 |
+
demo.launch(
|
178 |
+
share=False,
|
179 |
+
server_name="0.0.0.0",
|
180 |
+
server_port=7860,
|
181 |
+
show_error=True,
|
182 |
+
quiet=False
|
183 |
+
)
|