MUFASA25 commited on
Commit
da7d74b
·
verified ·
1 Parent(s): eb26f5e

set up a Gradio interface for our phishing email detection model:

Browse files
Files changed (1) hide show
  1. app.py +50 -61
app.py CHANGED
@@ -1,64 +1,53 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+
5
+ # Load model and tokenizer
6
+ tokenizer = AutoTokenizer.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
7
+ model = AutoModelForSequenceClassification.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
8
+
9
+ def predict_email(email_text):
10
+ # Preprocess and tokenize
11
+ inputs = tokenizer(
12
+ email_text,
13
+ return_tensors="pt",
14
+ truncation=True,
15
+ max_length=512
16
+ )
17
+
18
+ # Get prediction
19
+ with torch.no_grad():
20
+ outputs = model(**inputs)
21
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
22
+
23
+ # Get probabilities for each class
24
+ probs = predictions[0].tolist()
25
+
26
+ # Create labels dictionary
27
+ labels = {
28
+ "Legitimate Email": probs[0],
29
+ "Phishing URL": probs[1],
30
+ "Legitimate URL": probs[2],
31
+ "Phishing URL (Alt)": probs[3]
32
+ }
33
+
34
+ # Determine the most likely classification
35
+ max_label = max(labels.items(), key=lambda x: x[1])
36
+
37
+ # Format output
38
+ result = f"**Prediction**: {max_label[0]}\n**Confidence**: {max_label[1]:.4f}\n\n**All Probabilities**:\n"
39
+ for label, prob in labels.items():
40
+ result += f"{label}: {prob:.4f}\n"
41
+ return result
42
+
43
+ # Create Gradio interface
44
+ iface = gr.Interface(
45
+ fn=predict_email,
46
+ inputs=gr.Textbox(lines=5, placeholder="Enter the email text here..."),
47
+ outputs="text",
48
+ title="Phishing Email Detection",
49
+ description="Enter an email text to classify it as legitimate or phishing using a DistilBERT model."
 
 
 
 
 
 
 
 
 
 
50
  )
51
 
52
+ # Launch the interface
53
+ iface.launch()