Spaces:
Runtime error
Runtime error
set up a Gradio interface for our phishing email detection model:
Browse files
app.py
CHANGED
@@ -1,64 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
8 |
+
|
9 |
+
def predict_email(email_text):
|
10 |
+
# Preprocess and tokenize
|
11 |
+
inputs = tokenizer(
|
12 |
+
email_text,
|
13 |
+
return_tensors="pt",
|
14 |
+
truncation=True,
|
15 |
+
max_length=512
|
16 |
+
)
|
17 |
+
|
18 |
+
# Get prediction
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model(**inputs)
|
21 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
22 |
+
|
23 |
+
# Get probabilities for each class
|
24 |
+
probs = predictions[0].tolist()
|
25 |
+
|
26 |
+
# Create labels dictionary
|
27 |
+
labels = {
|
28 |
+
"Legitimate Email": probs[0],
|
29 |
+
"Phishing URL": probs[1],
|
30 |
+
"Legitimate URL": probs[2],
|
31 |
+
"Phishing URL (Alt)": probs[3]
|
32 |
+
}
|
33 |
+
|
34 |
+
# Determine the most likely classification
|
35 |
+
max_label = max(labels.items(), key=lambda x: x[1])
|
36 |
+
|
37 |
+
# Format output
|
38 |
+
result = f"**Prediction**: {max_label[0]}\n**Confidence**: {max_label[1]:.4f}\n\n**All Probabilities**:\n"
|
39 |
+
for label, prob in labels.items():
|
40 |
+
result += f"{label}: {prob:.4f}\n"
|
41 |
+
return result
|
42 |
+
|
43 |
+
# Create Gradio interface
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=predict_email,
|
46 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter the email text here..."),
|
47 |
+
outputs="text",
|
48 |
+
title="Phishing Email Detection",
|
49 |
+
description="Enter an email text to classify it as legitimate or phishing using a DistilBERT model."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
|
52 |
+
# Launch the interface
|
53 |
+
iface.launch()
|
|