Spaces:
Running
Running
File size: 8,353 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package db
import (
"context"
"fmt"
"math"
"github.com/go-openapi/strfmt"
"github.com/pkg/errors"
"github.com/weaviate/weaviate/entities/additional"
"github.com/weaviate/weaviate/entities/dto"
"github.com/weaviate/weaviate/entities/filters"
libfilters "github.com/weaviate/weaviate/entities/filters"
"github.com/weaviate/weaviate/entities/models"
"github.com/weaviate/weaviate/entities/schema"
"github.com/weaviate/weaviate/entities/search"
"github.com/weaviate/weaviate/usecases/classification"
"github.com/weaviate/weaviate/usecases/vectorizer"
)
// TODO: why is this logic in the persistence package? This is business-logic,
// move out of here!
func (db *DB) GetUnclassified(ctx context.Context, class string,
properties []string, filter *libfilters.LocalFilter,
) ([]search.Result, error) {
mergedFilter := mergeUserFilterWithRefCountFilter(filter, class, properties,
libfilters.OperatorEqual, 0)
res, err := db.Search(ctx, dto.GetParams{
ClassName: class,
Filters: mergedFilter,
Pagination: &libfilters.Pagination{
Limit: 10000, // TODO: gh-1219 increase
},
AdditionalProperties: additional.Properties{
Classification: true,
Vector: true,
ModuleParams: map[string]interface{}{
"interpretation": true,
},
},
})
return res, err
}
// TODO: why is this logic in the persistence package? This is business-logic,
// move out of here!
func (db *DB) ZeroShotSearch(ctx context.Context, vector []float32,
class string, properties []string,
filter *libfilters.LocalFilter,
) ([]search.Result, error) {
res, err := db.VectorSearch(ctx, dto.GetParams{
ClassName: class,
SearchVector: vector,
Pagination: &filters.Pagination{
Limit: 1,
},
Filters: filter,
AdditionalProperties: additional.Properties{
Vector: true,
},
})
return res, err
}
// TODO: why is this logic in the persistence package? This is business-logic,
// move out of here!
func (db *DB) AggregateNeighbors(ctx context.Context, vector []float32,
class string, properties []string, k int,
filter *libfilters.LocalFilter,
) ([]classification.NeighborRef, error) {
mergedFilter := mergeUserFilterWithRefCountFilter(filter, class, properties,
libfilters.OperatorGreaterThan, 0)
res, err := db.VectorSearch(ctx, dto.GetParams{
ClassName: class,
SearchVector: vector,
Pagination: &filters.Pagination{
Limit: k,
},
Filters: mergedFilter,
AdditionalProperties: additional.Properties{
Vector: true,
},
})
if err != nil {
return nil, errors.Wrap(err, "aggregate neighbors: search neighbors")
}
return NewKnnAggregator(res, vector).Aggregate(k, properties)
}
// TODO: this is business logic, move out of here
type KnnAggregator struct {
input search.Results
sourceVector []float32
}
func NewKnnAggregator(input search.Results, sourceVector []float32) *KnnAggregator {
return &KnnAggregator{input: input, sourceVector: sourceVector}
}
func (a *KnnAggregator) Aggregate(k int, properties []string) ([]classification.NeighborRef, error) {
neighbors, err := a.extractBeacons(properties)
if err != nil {
return nil, errors.Wrap(err, "aggregate: extract beacons from neighbors")
}
return a.aggregateBeacons(neighbors)
}
func (a *KnnAggregator) extractBeacons(properties []string) (neighborProps, error) {
neighbors := neighborProps{}
for i, elem := range a.input {
schemaMap, ok := elem.Schema.(map[string]interface{})
if !ok {
return nil, fmt.Errorf("expecteded element[%d].Schema to be map, got: %T", i, elem.Schema)
}
for _, prop := range properties {
refProp, ok := schemaMap[prop]
if !ok {
return nil, fmt.Errorf("expecteded element[%d].Schema to have property %q, but didn't", i, prop)
}
refTyped, ok := refProp.(models.MultipleRef)
if !ok {
return nil, fmt.Errorf("expecteded element[%d].Schema.%s to be models.MultipleRef, got: %T", i, prop, refProp)
}
if len(refTyped) != 1 {
return nil, fmt.Errorf("a knn training data object needs to have exactly one label: "+
"expecteded element[%d].Schema.%s to have exactly one reference, got: %d",
i, prop, len(refTyped))
}
distance, err := vectorizer.NormalizedDistance(a.sourceVector, elem.Vector)
if err != nil {
return nil, errors.Wrap(err, "calculate distance between source and candidate")
}
beacon := refTyped[0].Beacon.String()
neighborProp := neighbors[prop]
if neighborProp.beacons == nil {
neighborProp.beacons = neighborBeacons{}
}
neighborProp.beacons[beacon] = append(neighborProp.beacons[beacon], distance)
neighbors[prop] = neighborProp
}
}
return neighbors, nil
}
func (a *KnnAggregator) aggregateBeacons(props neighborProps) ([]classification.NeighborRef, error) {
var out []classification.NeighborRef
for propName, prop := range props {
var winningBeacon string
var winningCount int
var totalCount int
for beacon, distances := range prop.beacons {
totalCount += len(distances)
if len(distances) > winningCount {
winningBeacon = beacon
winningCount = len(distances)
}
}
distances := a.distances(prop.beacons, winningBeacon)
out = append(out, classification.NeighborRef{
Beacon: strfmt.URI(winningBeacon),
WinningCount: winningCount,
OverallCount: totalCount,
LosingCount: totalCount - winningCount,
Property: propName,
Distances: distances,
})
}
return out, nil
}
func (a *KnnAggregator) distances(beacons neighborBeacons,
winner string,
) classification.NeighborRefDistances {
out := classification.NeighborRefDistances{}
var winningDistances []float32
var losingDistances []float32
for beacon, distances := range beacons {
if beacon == winner {
winningDistances = distances
} else {
losingDistances = append(losingDistances, distances...)
}
}
if len(losingDistances) > 0 {
mean := mean(losingDistances)
out.MeanLosingDistance = &mean
closest := min(losingDistances)
out.ClosestLosingDistance = &closest
}
out.ClosestOverallDistance = min(append(winningDistances, losingDistances...))
out.ClosestWinningDistance = min(winningDistances)
out.MeanWinningDistance = mean(winningDistances)
return out
}
type neighborProps map[string]neighborProp
type neighborProp struct {
beacons neighborBeacons
}
type neighborBeacons map[string][]float32
func mergeUserFilterWithRefCountFilter(userFilter *libfilters.LocalFilter, className string,
properties []string, op libfilters.Operator, refCount int,
) *libfilters.LocalFilter {
countFilters := make([]libfilters.Clause, len(properties))
for i, prop := range properties {
countFilters[i] = libfilters.Clause{
Operator: op,
Value: &libfilters.Value{
Type: schema.DataTypeInt,
Value: refCount,
},
On: &libfilters.Path{
Class: schema.ClassName(className),
Property: schema.PropertyName(prop),
},
}
}
var countRootClause libfilters.Clause
if len(countFilters) == 1 {
countRootClause = countFilters[0]
} else {
countRootClause = libfilters.Clause{
Operands: countFilters,
Operator: libfilters.OperatorAnd,
}
}
rootFilter := &libfilters.LocalFilter{}
if userFilter == nil {
rootFilter.Root = &countRootClause
} else {
rootFilter.Root = &libfilters.Clause{
Operator: libfilters.OperatorAnd, // so we can AND the refcount requirements and whatever custom filters, the user has
Operands: []libfilters.Clause{*userFilter.Root, countRootClause},
}
}
return rootFilter
}
func mean(in []float32) float32 {
sum := float32(0)
for _, v := range in {
sum += v
}
return sum / float32(len(in))
}
func min(in []float32) float32 {
min := float32(math.MaxFloat32)
for _, dist := range in {
if dist < min {
min = dist
}
}
return min
}
|