File size: 6,086 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package inverted

import (
	"bytes"
	"encoding/binary"

	"github.com/google/uuid"
	"github.com/weaviate/weaviate/adapters/repos/db/helpers"
	"github.com/weaviate/weaviate/entities/models"
)

type IsFallbackToSearchable func() bool

type Countable struct {
	Data          []byte
	TermFrequency float32
}

type Property struct {
	Name               string
	Items              []Countable
	Length             int
	HasFilterableIndex bool // roaring set index
	HasSearchableIndex bool // map index (with frequencies)
}

type NilProperty struct {
	Name                string
	AddToPropertyLength bool
}

func DedupItems(props []Property) []Property {
	for i := range props {
		seen := map[string]struct{}{}
		items := props[i].Items

		var key string
		// reverse order to keep latest elements
		for j := len(items) - 1; j >= 0; j-- {
			key = string(items[j].Data)
			if _, ok := seen[key]; ok {
				// remove element already seen
				items = append(items[:j], items[j+1:]...)
			}
			seen[key] = struct{}{}
		}
		props[i].Items = items
	}
	return props
}

type Analyzer struct {
	isFallbackToSearchable IsFallbackToSearchable
}

// Text tokenizes given input according to selected tokenization,
// then aggregates duplicates
func (a *Analyzer) Text(tokenization, in string) []Countable {
	return a.TextArray(tokenization, []string{in})
}

// TextArray tokenizes given input according to selected tokenization,
// then aggregates duplicates
func (a *Analyzer) TextArray(tokenization string, inArr []string) []Countable {
	var terms []string
	for _, in := range inArr {
		terms = append(terms, helpers.Tokenize(tokenization, in)...)
	}

	counts := map[string]uint64{}
	for _, term := range terms {
		counts[term]++
	}

	countable := make([]Countable, len(counts))
	i := 0
	for term, count := range counts {
		countable[i] = Countable{
			Data:          []byte(term),
			TermFrequency: float32(count),
		}
		i++
	}
	return countable
}

// Int requires no analysis, so it's actually just a simple conversion to a
// string-formatted byte slice of the int
func (a *Analyzer) Int(in int64) ([]Countable, error) {
	data, err := LexicographicallySortableInt64(in)
	if err != nil {
		return nil, err
	}

	return []Countable{
		{
			Data: data,
		},
	}, nil
}

// UUID requires no analysis, so it's just dumping the raw binary representation
func (a *Analyzer) UUID(in uuid.UUID) ([]Countable, error) {
	return []Countable{
		{
			Data: in[:],
		},
	}, nil
}

// UUID array requires no analysis, so it's just dumping the raw binary
// representation of each contained element
func (a *Analyzer) UUIDArray(in []uuid.UUID) ([]Countable, error) {
	out := make([]Countable, len(in))
	for i := range in {
		out[i] = Countable{
			Data: in[i][:],
		}
	}

	return out, nil
}

// Int array requires no analysis, so it's actually just a simple conversion to a
// string-formatted byte slice of the int
func (a *Analyzer) IntArray(in []int64) ([]Countable, error) {
	out := make([]Countable, len(in))
	for i := range in {
		data, err := LexicographicallySortableInt64(in[i])
		if err != nil {
			return nil, err
		}
		out[i] = Countable{Data: data}
	}

	return out, nil
}

// Float requires no analysis, so it's actually just a simple conversion to a
// lexicographically sortable byte slice.
func (a *Analyzer) Float(in float64) ([]Countable, error) {
	data, err := LexicographicallySortableFloat64(in)
	if err != nil {
		return nil, err
	}

	return []Countable{
		{
			Data: data,
		},
	}, nil
}

// Float array requires no analysis, so it's actually just a simple conversion to a
// lexicographically sortable byte slice.
func (a *Analyzer) FloatArray(in []float64) ([]Countable, error) {
	out := make([]Countable, len(in))
	for i := range in {
		data, err := LexicographicallySortableFloat64(in[i])
		if err != nil {
			return nil, err
		}
		out[i] = Countable{Data: data}
	}

	return out, nil
}

// BoolArray requires no analysis, so it's actually just a simple conversion to a
// little-endian ordered byte slice
func (a *Analyzer) BoolArray(in []bool) ([]Countable, error) {
	out := make([]Countable, len(in))
	for i := range in {
		b := bytes.NewBuffer(nil)
		err := binary.Write(b, binary.LittleEndian, &in[i])
		if err != nil {
			return nil, err
		}
		out[i] = Countable{Data: b.Bytes()}
	}

	return out, nil
}

// Bool requires no analysis, so it's actually just a simple conversion to a
// little-endian ordered byte slice
func (a *Analyzer) Bool(in bool) ([]Countable, error) {
	b := bytes.NewBuffer(nil)
	err := binary.Write(b, binary.LittleEndian, &in)
	if err != nil {
		return nil, err
	}

	return []Countable{
		{
			Data: b.Bytes(),
		},
	}, nil
}

// RefCount does not index the content of the refs, but only the count with 0
// being an explicitly allowed value as well.
func (a *Analyzer) RefCount(in models.MultipleRef) ([]Countable, error) {
	length := uint64(len(in))
	data, err := LexicographicallySortableUint64(length)
	if err != nil {
		return nil, err
	}

	return []Countable{
		{
			Data: data,
		},
	}, nil
}

// Ref indexes references as beacon-strings
func (a *Analyzer) Ref(in models.MultipleRef) ([]Countable, error) {
	out := make([]Countable, len(in))

	for i, ref := range in {
		out[i] = Countable{
			Data: []byte(ref.Beacon),
		}
	}

	return out, nil
}

func NewAnalyzer(isFallbackToSearchable IsFallbackToSearchable) *Analyzer {
	if isFallbackToSearchable == nil {
		isFallbackToSearchable = func() bool { return false }
	}
	return &Analyzer{isFallbackToSearchable: isFallbackToSearchable}
}