Spaces:
Running
Running
File size: 31,678 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package lsmkv
import (
"bytes"
"context"
"errors"
"fmt"
"os"
"path/filepath"
"sort"
"sync"
"time"
"github.com/prometheus/client_golang/prometheus"
"github.com/sirupsen/logrus"
"github.com/weaviate/weaviate/adapters/repos/db/lsmkv/segmentindex"
"github.com/weaviate/weaviate/entities/cyclemanager"
"github.com/weaviate/weaviate/entities/interval"
"github.com/weaviate/weaviate/entities/lsmkv"
"github.com/weaviate/weaviate/entities/storagestate"
"github.com/weaviate/weaviate/entities/storobj"
)
type Bucket struct {
dir string
rootDir string
active *Memtable
flushing *Memtable
disk *SegmentGroup
logger logrus.FieldLogger
// Lock() means a move from active to flushing is happening, RLock() is
// normal operation
flushLock sync.RWMutex
haltedFlushTimer *interval.BackoffTimer
walThreshold uint64
flushAfterIdle time.Duration
memtableThreshold uint64
memtableResizer *memtableSizeAdvisor
strategy string
// Strategy inverted index is supposed to be created with, but existing
// segment files were created with different one.
// It can happen when new strategy were introduced to weaviate, but
// files are already created using old implementation.
// Example: RoaringSet strategy replaces CollectionSet strategy.
// Field can be used for migration files of old strategy to newer one.
desiredStrategy string
secondaryIndices uint16
// Optional to avoid syscalls
mmapContents bool
// for backward compatibility
legacyMapSortingBeforeCompaction bool
flushCallbackCtrl cyclemanager.CycleCallbackCtrl
status storagestate.Status
statusLock sync.RWMutex
metrics *Metrics
// all "replace" buckets support counting through net additions, but not all
// produce a meaningful count. Typically, the only count we're interested in
// is that of the bucket that holds objects
monitorCount bool
pauseTimer *prometheus.Timer // Times the pause
// Whether tombstones (set/map/replace types) or deletions (roaringset type)
// should be kept in root segment during compaction process.
// Since segments are immutable, deletions are added as new entries with
// tombstones. Tombstones are by default copied to merged segment, as they
// can refer to keys/values present in previous segments.
// Those tombstones can be removed entirely when merging with root (1st) segment,
// due to lack of previous segments, tombstones may relate to.
// As info about key/value being deleted (based on tombstone presence) may be important
// for some use cases (e.g. replication needs to know if object(ObjectsBucketLSM) was deleted)
// keeping tombstones on compaction is optional
keepTombstones bool
// Init and use bloom filter for getting key from bucket segments.
// As some buckets can be accessed only with cursor (see flat index),
// where bloom filter is not applicable, it can be disabled.
// ON by default
useBloomFilter bool
// Net additions keep track of number of elements stored in bucket (of type replace).
// As some buckets don't have to provide Count info (see flat index),
// tracking additions can be disabled.
// ON by default
calcCountNetAdditions bool
forceCompaction bool
}
// NewBucket initializes a new bucket. It either loads the state from disk if
// it exists, or initializes new state.
//
// You do not need to ever call NewBucket() yourself, if you are using a
// [Store]. In this case the [Store] can manage buckets for you, using methods
// such as CreateOrLoadBucket().
func NewBucket(ctx context.Context, dir, rootDir string, logger logrus.FieldLogger,
metrics *Metrics, compactionCallbacks, flushCallbacks cyclemanager.CycleCallbackGroup,
opts ...BucketOption,
) (*Bucket, error) {
beforeAll := time.Now()
defaultMemTableThreshold := uint64(10 * 1024 * 1024)
defaultWalThreshold := uint64(1024 * 1024 * 1024)
defaultFlushAfterIdle := 60 * time.Second
defaultStrategy := StrategyReplace
if err := os.MkdirAll(dir, 0o700); err != nil {
return nil, err
}
b := &Bucket{
dir: dir,
rootDir: rootDir,
memtableThreshold: defaultMemTableThreshold,
walThreshold: defaultWalThreshold,
flushAfterIdle: defaultFlushAfterIdle,
strategy: defaultStrategy,
mmapContents: true,
logger: logger,
metrics: metrics,
useBloomFilter: true,
calcCountNetAdditions: true,
haltedFlushTimer: interval.NewBackoffTimer(),
}
for _, opt := range opts {
if err := opt(b); err != nil {
return nil, err
}
}
if b.memtableResizer != nil {
b.memtableThreshold = uint64(b.memtableResizer.Initial())
}
sg, err := newSegmentGroup(logger, metrics, compactionCallbacks,
sgConfig{
dir: dir,
strategy: b.strategy,
mapRequiresSorting: b.legacyMapSortingBeforeCompaction,
monitorCount: b.monitorCount,
mmapContents: b.mmapContents,
keepTombstones: b.keepTombstones,
forceCompaction: b.forceCompaction,
useBloomFilter: b.useBloomFilter,
calcCountNetAdditions: b.calcCountNetAdditions,
})
if err != nil {
return nil, fmt.Errorf("init disk segments: %w", err)
}
// Actual strategy is stored in segment files. In case it is SetCollection,
// while new implementation uses bitmaps and supposed to be RoaringSet,
// bucket and segmentgroup strategy is changed back to SetCollection
// (memtables will be created later on, with already modified strategy)
// TODO what if only WAL files exists, and there is no segment to get actual strategy?
if b.strategy == StrategyRoaringSet && len(sg.segments) > 0 &&
sg.segments[0].strategy == segmentindex.StrategySetCollection {
b.strategy = StrategySetCollection
b.desiredStrategy = StrategyRoaringSet
sg.strategy = StrategySetCollection
}
// As of v1.19 property's IndexInterval setting is replaced with
// IndexFilterable (roaring set) + IndexSearchable (map) and enabled by default.
// Buckets for text/text[] inverted indexes created before 1.19 have strategy
// map and name that since 1.19 is used by filterable indeverted index.
// Those buckets (roaring set by configuration, but in fact map) have to be
// renamed on startup by migrator. Here actual strategy is set based on
// data found in segment files
if b.strategy == StrategyRoaringSet && len(sg.segments) > 0 &&
sg.segments[0].strategy == segmentindex.StrategyMapCollection {
b.strategy = StrategyMapCollection
b.desiredStrategy = StrategyRoaringSet
sg.strategy = StrategyMapCollection
}
b.disk = sg
if err := b.setNewActiveMemtable(); err != nil {
return nil, err
}
if err := b.recoverFromCommitLogs(ctx); err != nil {
return nil, err
}
id := "bucket/flush/" + b.dir
b.flushCallbackCtrl = flushCallbacks.Register(id, b.flushAndSwitchIfThresholdsMet)
b.metrics.TrackStartupBucket(beforeAll)
return b, nil
}
func (b *Bucket) GetDir() string {
return b.dir
}
func (b *Bucket) GetRootDir() string {
return b.rootDir
}
func (b *Bucket) GetStrategy() string {
return b.strategy
}
func (b *Bucket) GetDesiredStrategy() string {
return b.desiredStrategy
}
func (b *Bucket) GetSecondaryIndices() uint16 {
return b.secondaryIndices
}
func (b *Bucket) GetStatus() storagestate.Status {
b.statusLock.RLock()
defer b.statusLock.RUnlock()
return b.status
}
func (b *Bucket) GetMemtableThreshold() uint64 {
return b.memtableThreshold
}
func (b *Bucket) GetWalThreshold() uint64 {
return b.walThreshold
}
func (b *Bucket) GetFlushAfterIdle() time.Duration {
return b.flushAfterIdle
}
func (b *Bucket) GetFlushCallbackCtrl() cyclemanager.CycleCallbackCtrl {
return b.flushCallbackCtrl
}
func (b *Bucket) IterateObjects(ctx context.Context, f func(object *storobj.Object) error) error {
i := 0
cursor := b.Cursor()
defer cursor.Close()
for k, v := cursor.First(); k != nil; k, v = cursor.Next() {
obj, err := storobj.FromBinary(v)
if err != nil {
return fmt.Errorf("cannot unmarshal object %d, %v", i, err)
}
if err := f(obj); err != nil {
return fmt.Errorf("callback on object '%d' failed: %w", obj.DocID(), err)
}
i++
}
return nil
}
func (b *Bucket) IterateMapObjects(ctx context.Context, f func([]byte, []byte, []byte, bool) error) error {
cursor := b.MapCursor()
defer cursor.Close()
for kList, vList := cursor.First(); kList != nil; kList, vList = cursor.Next() {
for _, v := range vList {
if err := f(kList, v.Key, v.Value, v.Tombstone); err != nil {
return fmt.Errorf("callback on object '%v' failed: %w", v, err)
}
}
}
return nil
}
func (b *Bucket) SetMemtableThreshold(size uint64) {
b.memtableThreshold = size
}
// Get retrieves the single value for the given key.
//
// Get is specific to ReplaceStrategy and cannot be used with any of the other
// strategies. Use [Bucket.SetList] or [Bucket.MapList] instead.
//
// Get uses the regular or "primary" key for an object. If a bucket has
// secondary indexes, use [Bucket.GetBySecondary] to retrieve an object using
// its secondary key
func (b *Bucket) Get(key []byte) ([]byte, error) {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
v, err := b.active.get(key)
if err == nil {
// item found and no error, return and stop searching, since the strategy
// is replace
return v, nil
}
if errors.Is(err, lsmkv.Deleted) {
// deleted in the mem-table (which is always the latest) means we don't
// have to check the disk segments, return nil now
return nil, nil
}
if err != lsmkv.NotFound {
panic(fmt.Sprintf("unsupported error in bucket.Get: %v\n", err))
}
if b.flushing != nil {
v, err := b.flushing.get(key)
if err == nil {
// item found and no error, return and stop searching, since the strategy
// is replace
return v, nil
}
if errors.Is(err, lsmkv.Deleted) {
// deleted in the now most recent memtable means we don't have to check
// the disk segments, return nil now
return nil, nil
}
if err != lsmkv.NotFound {
panic("unsupported error in bucket.Get")
}
}
return b.disk.get(key)
}
// GetBySecondary retrieves an object using one of its secondary keys. A bucket
// can have an infinite number of secondary keys. Specify the secondary key
// position as the first argument.
//
// A real-life example of secondary keys is the Weaviate object store. Objects
// are stored with the user-facing ID as their primary key and with the doc-id
// (an ever-increasing uint64) as the secondary key.
//
// Similar to [Bucket.Get], GetBySecondary is limited to ReplaceStrategy. No
// equivalent exists for Set and Map, as those do not support secondary
// indexes.
func (b *Bucket) GetBySecondary(pos int, key []byte) ([]byte, error) {
bytes, _, err := b.GetBySecondaryIntoMemory(pos, key, nil)
return bytes, err
}
// GetBySecondaryWithBuffer is like [Bucket.GetBySecondary], but also takes a
// buffer. It's in the response of the caller to pool the buffer, since the
// bucket does not know when the caller is done using it. The return bytes will
// likely point to the same memory that's part of the buffer. However, if the
// buffer is to small, a larger buffer may also be returned (second arg).
func (b *Bucket) GetBySecondaryWithBuffer(pos int, key []byte, buf []byte) ([]byte, []byte, error) {
bytes, newBuf, err := b.GetBySecondaryIntoMemory(pos, key, buf)
return bytes, newBuf, err
}
// GetBySecondaryIntoMemory copies into the specified memory, and retrieves
// an object using one of its secondary keys. A bucket
// can have an infinite number of secondary keys. Specify the secondary key
// position as the first argument.
//
// A real-life example of secondary keys is the Weaviate object store. Objects
// are stored with the user-facing ID as their primary key and with the doc-id
// (an ever-increasing uint64) as the secondary key.
//
// Similar to [Bucket.Get], GetBySecondary is limited to ReplaceStrategy. No
// equivalent exists for Set and Map, as those do not support secondary
// indexes.
func (b *Bucket) GetBySecondaryIntoMemory(pos int, key []byte, buffer []byte) ([]byte, []byte, error) {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
v, err := b.active.getBySecondary(pos, key)
if err == nil {
// item found and no error, return and stop searching, since the strategy
// is replace
return v, buffer, nil
}
if errors.Is(err, lsmkv.Deleted) {
// deleted in the mem-table (which is always the latest) means we don't
// have to check the disk segments, return nil now
return nil, buffer, nil
}
if err != lsmkv.NotFound {
panic("unsupported error in bucket.Get")
}
if b.flushing != nil {
v, err := b.flushing.getBySecondary(pos, key)
if err == nil {
// item found and no error, return and stop searching, since the strategy
// is replace
return v, buffer, nil
}
if errors.Is(err, lsmkv.Deleted) {
// deleted in the now most recent memtable means we don't have to check
// the disk segments, return nil now
return nil, buffer, nil
}
if err != lsmkv.NotFound {
panic("unsupported error in bucket.Get")
}
}
return b.disk.getBySecondaryIntoMemory(pos, key, buffer)
}
// SetList returns all Set entries for a given key.
//
// SetList is specific to the Set Strategy, for Map use [Bucket.MapList], and
// for Replace use [Bucket.Get].
func (b *Bucket) SetList(key []byte) ([][]byte, error) {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
var out []value
v, err := b.disk.getCollection(key)
if err != nil {
if err != nil && err != lsmkv.NotFound {
return nil, err
}
}
out = v
if b.flushing != nil {
v, err = b.flushing.getCollection(key)
if err != nil {
if err != nil && err != lsmkv.NotFound {
return nil, err
}
}
out = append(out, v...)
}
v, err = b.active.getCollection(key)
if err != nil {
if err != nil && err != lsmkv.NotFound {
return nil, err
}
}
if len(v) > 0 {
// skip the expensive append operation if there was no memtable
out = append(out, v...)
}
return newSetDecoder().Do(out), nil
}
// Put creates or replaces a single value for a given key.
//
// err := bucket.Put([]byte("my_key"), []byte("my_value"))
// if err != nil {
// /* do something */
// }
//
// If a bucket has a secondary index configured, you can also specify one or
// more secondary keys, like so:
//
// err := bucket.Put([]byte("my_key"), []byte("my_value"),
// WithSecondaryKey(0, []byte("my_alternative_key")),
// )
// if err != nil {
// /* do something */
// }
//
// Put is limited to ReplaceStrategy, use [Bucket.SetAdd] for Set or
// [Bucket.MapSet] and [Bucket.MapSetMulti].
func (b *Bucket) Put(key, value []byte, opts ...SecondaryKeyOption) error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
return b.active.put(key, value, opts...)
}
// SetAdd adds one or more Set-Entries to a Set for the given key. SetAdd is
// entirely agnostic of existing entries, it acts as append-only. This also
// makes it agnostic of whether the key already exists or not.
//
// Example to add two entries to a set:
//
// err := bucket.SetAdd([]byte("my_key"), [][]byte{
// []byte("one-set-element"), []byte("another-set-element"),
// })
// if err != nil {
// /* do something */
// }
//
// SetAdd is specific to the Set strategy. For Replace, use [Bucket.Put], for
// Map use either [Bucket.MapSet] or [Bucket.MapSetMulti].
func (b *Bucket) SetAdd(key []byte, values [][]byte) error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
return b.active.append(key, newSetEncoder().Do(values))
}
// SetDeleteSingle removes one Set element from the given key. Note that LSM
// stores are append only, thus internally this action appends a tombstone. The
// entry will not be removed until a compaction has run, and even then a
// compaction does not guarantee the removal of the data right away. This is
// because an entry could have been created in an older segment than those
// present in the compaction. This can be seen as an implementation detail,
// unless the caller expects to free disk space by calling this method. Such
// freeing is not guaranteed.
//
// SetDeleteSingle is specific to the Set Strategy. For Replace, you can use
// [Bucket.Delete] to delete the entire row, for Maps use [Bucket.MapDeleteKey]
// to delete a single map entry.
func (b *Bucket) SetDeleteSingle(key []byte, valueToDelete []byte) error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
return b.active.append(key, []value{
{
value: valueToDelete,
tombstone: true,
},
})
}
// WasDeleted determines if an object used to exist in the LSM store
//
// There are 3 different locations that we need to check for the key
// in this order: active memtable, flushing memtable, and disk
// segment
func (b *Bucket) WasDeleted(key []byte) (bool, error) {
if !b.keepTombstones {
return false, fmt.Errorf("Bucket requires option `keepTombstones` set to check deleted keys")
}
b.flushLock.RLock()
defer b.flushLock.RUnlock()
_, err := b.active.get(key)
switch err {
case nil:
return false, nil
case lsmkv.Deleted:
return true, nil
case lsmkv.NotFound:
// We can still check flushing and disk
default:
return false, fmt.Errorf("unsupported bucket error: %w", err)
}
if b.flushing != nil {
_, err := b.flushing.get(key)
switch err {
case nil:
return false, nil
case lsmkv.Deleted:
return true, nil
case lsmkv.NotFound:
// We can still check disk
default:
return false, fmt.Errorf("unsupported bucket error: %w", err)
}
}
_, err = b.disk.get(key)
switch err {
case nil, lsmkv.NotFound:
return false, nil
case lsmkv.Deleted:
return true, nil
default:
return false, fmt.Errorf("unsupported bucket error: %w", err)
}
}
type MapListOptionConfig struct {
acceptDuplicates bool
legacyRequireManualSorting bool
}
type MapListOption func(c *MapListOptionConfig)
func MapListAcceptDuplicates() MapListOption {
return func(c *MapListOptionConfig) {
c.acceptDuplicates = true
}
}
func MapListLegacySortingRequired() MapListOption {
return func(c *MapListOptionConfig) {
c.legacyRequireManualSorting = true
}
}
// MapList returns all map entries for a given row key. The order of map pairs
// has no specific meaning. For efficient merge operations, pair entries are
// stored sorted on disk, however that is an implementation detail and not a
// caller-facing guarantee.
//
// MapList is specific to the Map strategy, for Sets use [Bucket.SetList], for
// Replace use [Bucket.Get].
func (b *Bucket) MapList(key []byte, cfgs ...MapListOption) ([]MapPair, error) {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
c := MapListOptionConfig{}
for _, cfg := range cfgs {
cfg(&c)
}
segments := [][]MapPair{}
// before := time.Now()
disk, err := b.disk.getCollectionBySegments(key)
if err != nil {
if err != nil && err != lsmkv.NotFound {
return nil, err
}
}
for i := range disk {
segmentDecoded := make([]MapPair, len(disk[i]))
for j, v := range disk[i] {
if err := segmentDecoded[j].FromBytes(v.value, false); err != nil {
return nil, err
}
segmentDecoded[j].Tombstone = v.tombstone
}
segments = append(segments, segmentDecoded)
}
// fmt.Printf("--map-list: get all disk segments took %s\n", time.Since(before))
// before = time.Now()
// fmt.Printf("--map-list: append all disk segments took %s\n", time.Since(before))
if b.flushing != nil {
v, err := b.flushing.getMap(key)
if err != nil {
if err != nil && err != lsmkv.NotFound {
return nil, err
}
}
segments = append(segments, v)
}
// before = time.Now()
v, err := b.active.getMap(key)
if err != nil {
if err != nil && err != lsmkv.NotFound {
return nil, err
}
}
segments = append(segments, v)
// fmt.Printf("--map-list: get all active segments took %s\n", time.Since(before))
// before = time.Now()
// defer func() {
// fmt.Printf("--map-list: run decoder took %s\n", time.Since(before))
// }()
if c.legacyRequireManualSorting {
// Sort to support segments which were stored in an unsorted fashion
for i := range segments {
sort.Slice(segments[i], func(a, b int) bool {
return bytes.Compare(segments[i][a].Key, segments[i][b].Key) == -1
})
}
}
return newSortedMapMerger().do(segments)
}
// MapSet writes one [MapPair] into the map for the given row key. It is
// agnostic of whether the row key already exists, as well as agnostic of
// whether the map key already exists. In both cases it will create the entry
// if it does not exist or override if it does.
//
// Example to add a new MapPair:
//
// pair := MapPair{Key: []byte("Jane"), Value: []byte("Backend")}
// err := bucket.MapSet([]byte("developers"), pair)
// if err != nil {
// /* do something */
// }
//
// MapSet is specific to the Map Strategy, for Replace use [Bucket.Put], and for Set use [Bucket.SetAdd] instead.
func (b *Bucket) MapSet(rowKey []byte, kv MapPair) error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
return b.active.appendMapSorted(rowKey, kv)
}
// MapSetMulti is the same as [Bucket.MapSet], except that it takes in multiple
// [MapPair] objects at the same time.
func (b *Bucket) MapSetMulti(rowKey []byte, kvs []MapPair) error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
for _, kv := range kvs {
if err := b.active.appendMapSorted(rowKey, kv); err != nil {
return err
}
}
return nil
}
// MapDeleteKey removes one key-value pair from the given map row. Note that
// LSM stores are append only, thus internally this action appends a tombstone.
// The entry will not be removed until a compaction has run, and even then a
// compaction does not guarantee the removal of the data right away. This is
// because an entry could have been created in an older segment than those
// present in the compaction. This can be seen as an implementation detail,
// unless the caller expects to free disk space by calling this method. Such
// freeing is not guaranteed.
//
// MapDeleteKey is specific to the Map Strategy. For Replace, you can use
// [Bucket.Delete] to delete the entire row, for Sets use [Bucket.SetDeleteSingle] to delete a single set element.
func (b *Bucket) MapDeleteKey(rowKey, mapKey []byte) error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
pair := MapPair{
Key: mapKey,
Tombstone: true,
}
return b.active.appendMapSorted(rowKey, pair)
}
// Delete removes the given row. Note that LSM stores are append only, thus
// internally this action appends a tombstone. The entry will not be removed
// until a compaction has run, and even then a compaction does not guarantee
// the removal of the data right away. This is because an entry could have been
// created in an older segment than those present in the compaction. This can
// be seen as an implementation detail, unless the caller expects to free disk
// space by calling this method. Such freeing is not guaranteed.
//
// Delete is specific to the Replace Strategy. For Maps, you can use
// [Bucket.MapDeleteKey] to delete a single key-value pair, for Sets use
// [Bucket.SetDeleteSingle] to delete a single set element.
func (b *Bucket) Delete(key []byte, opts ...SecondaryKeyOption) error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
return b.active.setTombstone(key, opts...)
}
// meant to be called from situations where a lock is already held, does not
// lock on its own
func (b *Bucket) setNewActiveMemtable() error {
mt, err := newMemtable(filepath.Join(b.dir, fmt.Sprintf("segment-%d",
time.Now().UnixNano())), b.strategy, b.secondaryIndices, b.metrics)
if err != nil {
return err
}
b.active = mt
return nil
}
func (b *Bucket) Count() int {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
if b.strategy != StrategyReplace {
panic("Count() called on strategy other than 'replace'")
}
memtableCount := 0
if b.flushing == nil {
// only consider active
memtableCount += b.memtableNetCount(b.active.countStats(), nil)
} else {
flushingCountStats := b.flushing.countStats()
activeCountStats := b.active.countStats()
deltaActive := b.memtableNetCount(activeCountStats, flushingCountStats)
deltaFlushing := b.memtableNetCount(flushingCountStats, nil)
memtableCount = deltaActive + deltaFlushing
}
diskCount := b.disk.count()
if b.monitorCount {
b.metrics.ObjectCount(memtableCount + diskCount)
}
return memtableCount + diskCount
}
func (b *Bucket) memtableNetCount(stats *countStats, previousMemtable *countStats) int {
netCount := 0
// TODO: this uses regular get, given that this may be called quite commonly,
// we might consider building a pure Exists(), which skips reading the value
// and only checks for tombstones, etc.
for _, key := range stats.upsertKeys {
if !b.existsOnDiskAndPreviousMemtable(previousMemtable, key) {
netCount++
}
}
for _, key := range stats.tombstonedKeys {
if b.existsOnDiskAndPreviousMemtable(previousMemtable, key) {
netCount--
}
}
return netCount
}
func (b *Bucket) existsOnDiskAndPreviousMemtable(previous *countStats, key []byte) bool {
v, _ := b.disk.get(key) // current implementation can't error
if v == nil {
// not on disk, but it could still be in the previous memtable
return previous.hasUpsert(key)
}
// it exists on disk ,but it could still have been deleted in the previous memtable
return !previous.hasTombstone(key)
}
func (b *Bucket) Shutdown(ctx context.Context) error {
if err := b.disk.shutdown(ctx); err != nil {
return err
}
if err := b.flushCallbackCtrl.Unregister(ctx); err != nil {
return fmt.Errorf("long-running flush in progress: %w", ctx.Err())
}
b.flushLock.Lock()
if err := b.active.flush(); err != nil {
return err
}
b.flushLock.Unlock()
if b.flushing == nil {
// active has flushing, no one else was currently flushing, it's safe to
// exit
return nil
}
// it seems we still need to wait for someone to finish flushing
t := time.NewTicker(50 * time.Millisecond)
defer t.Stop()
for {
select {
case <-ctx.Done():
return ctx.Err()
case <-t.C:
if b.flushing == nil {
return nil
}
}
}
}
func (b *Bucket) flushAndSwitchIfThresholdsMet(shouldAbort cyclemanager.ShouldAbortCallback) bool {
b.flushLock.RLock()
commitLogSize := b.active.commitlog.Size()
memtableTooLarge := b.active.Size() >= b.memtableThreshold
walTooLarge := uint64(commitLogSize) >= b.walThreshold
dirtyButIdle := (b.active.Size() > 0 || commitLogSize > 0) &&
b.active.IdleDuration() >= b.flushAfterIdle
shouldSwitch := memtableTooLarge || walTooLarge || dirtyButIdle
// If true, the parent shard has indicated that it has
// entered an immutable state. During this time, the
// bucket should refrain from flushing until its shard
// indicates otherwise
if shouldSwitch && b.isReadOnly() {
if b.haltedFlushTimer.IntervalElapsed() {
b.logger.WithField("action", "lsm_memtable_flush").
WithField("path", b.dir).
Warn("flush halted due to shard READONLY status")
b.haltedFlushTimer.IncreaseInterval()
}
b.flushLock.RUnlock()
return false
}
b.flushLock.RUnlock()
if shouldSwitch {
b.haltedFlushTimer.Reset()
cycleLength := b.active.ActiveDuration()
if err := b.FlushAndSwitch(); err != nil {
b.logger.WithField("action", "lsm_memtable_flush").
WithField("path", b.dir).
WithError(err).
Errorf("flush and switch failed")
}
if b.memtableResizer != nil {
next, ok := b.memtableResizer.NextTarget(int(b.memtableThreshold), cycleLength)
if ok {
b.memtableThreshold = uint64(next)
}
}
return true
}
return false
}
// UpdateStatus is used by the parent shard to communicate to the bucket
// when the shard has been set to readonly, or when it is ready for
// writes.
func (b *Bucket) UpdateStatus(status storagestate.Status) {
b.statusLock.Lock()
defer b.statusLock.Unlock()
b.status = status
b.disk.UpdateStatus(status)
}
func (b *Bucket) isReadOnly() bool {
b.statusLock.Lock()
defer b.statusLock.Unlock()
return b.status == storagestate.StatusReadOnly
}
// FlushAndSwitch is typically called periodically and does not require manual
// calling, but there are some situations where this might be intended, such as
// in test scenarios or when a force flush is desired.
func (b *Bucket) FlushAndSwitch() error {
before := time.Now()
b.logger.WithField("action", "lsm_memtable_flush_start").
WithField("path", b.dir).
Trace("start flush and switch")
if err := b.atomicallySwitchMemtable(); err != nil {
return fmt.Errorf("switch active memtable: %w", err)
}
if err := b.flushing.flush(); err != nil {
return fmt.Errorf("flush: %w", err)
}
if err := b.atomicallyAddDiskSegmentAndRemoveFlushing(); err != nil {
return fmt.Errorf("add segment and remove flushing: %w", err)
}
took := time.Since(before)
b.logger.WithField("action", "lsm_memtable_flush_complete").
WithField("path", b.dir).
Trace("finish flush and switch")
b.logger.WithField("action", "lsm_memtable_flush_complete").
WithField("path", b.dir).
WithField("took", took).
Debugf("flush and switch took %s\n", took)
return nil
}
func (b *Bucket) atomicallyAddDiskSegmentAndRemoveFlushing() error {
b.flushLock.Lock()
defer b.flushLock.Unlock()
path := b.flushing.path
if err := b.disk.add(path + ".db"); err != nil {
return err
}
b.flushing = nil
if b.strategy == StrategyReplace && b.monitorCount {
// having just flushed the memtable we now have the most up2date count which
// is a good place to update the metric
b.metrics.ObjectCount(b.disk.count())
}
return nil
}
func (b *Bucket) atomicallySwitchMemtable() error {
b.flushLock.Lock()
defer b.flushLock.Unlock()
b.flushing = b.active
return b.setNewActiveMemtable()
}
func (b *Bucket) Strategy() string {
return b.strategy
}
func (b *Bucket) DesiredStrategy() string {
return b.desiredStrategy
}
// the WAL uses a buffer and isn't written until the buffer size is crossed or
// this function explicitly called. This allows to avoid unnecessary disk
// writes in larger operations, such as batches. It is sufficient to call write
// on the WAL just once. This does not make a batch atomic, but it guarantees
// that the WAL is written before a successful response is returned to the
// user.
func (b *Bucket) WriteWAL() error {
b.flushLock.RLock()
defer b.flushLock.RUnlock()
return b.active.writeWAL()
}
|