Spaces:
Running
Running
File size: 5,137 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package segmentindex
import (
"bytes"
"errors"
"fmt"
"io"
"github.com/weaviate/weaviate/entities/lsmkv"
"github.com/weaviate/weaviate/usecases/byteops"
)
// DiskTree is a read-only wrapper around a marshalled index search tree, which
// can be used for reading, but cannot change the underlying structure. It is
// thus perfectly suited as an index for an (immutable) LSM disk segment, but
// pretty much useless for anything else
type DiskTree struct {
data []byte
}
type dtNode struct {
key []byte
startPos uint64
endPos uint64
leftChild int64
rightChild int64
}
func NewDiskTree(data []byte) *DiskTree {
return &DiskTree{
data: data,
}
}
func (t *DiskTree) Get(key []byte) (Node, error) {
if len(t.data) == 0 {
return Node{}, lsmkv.NotFound
}
var out Node
rw := byteops.NewReadWriter(t.data)
// jump to the buffer until the node with _key_ is found or return a NotFound error.
// This function avoids allocations by reusing the same buffer for all keys and avoids memory reads by only
// extracting the necessary pieces of information while skipping the rest
NodeKeyBuffer := make([]byte, len(key))
for {
// detect if there is no node with the wanted key.
if rw.Position+4 > uint64(len(t.data)) || rw.Position+4 < 4 {
return out, lsmkv.NotFound
}
keyLen := rw.ReadUint32()
if int(keyLen) > len(NodeKeyBuffer) {
NodeKeyBuffer = make([]byte, int(keyLen))
} else if int(keyLen) < len(NodeKeyBuffer) {
NodeKeyBuffer = NodeKeyBuffer[:keyLen]
}
_, err := rw.CopyBytesFromBuffer(uint64(keyLen), NodeKeyBuffer)
if err != nil {
return out, fmt.Errorf("copy node key: %w", err)
}
keyEqual := bytes.Compare(key, NodeKeyBuffer)
if keyEqual == 0 {
out.Key = NodeKeyBuffer
out.Start = rw.ReadUint64()
out.End = rw.ReadUint64()
return out, nil
} else if keyEqual < 0 {
rw.MoveBufferPositionForward(2 * 8) // jump over start+end position
rw.Position = rw.ReadUint64() // left child
} else {
rw.MoveBufferPositionForward(3 * 8) // jump over start+end position and left child
rw.Position = rw.ReadUint64() // right child
}
}
}
func (t *DiskTree) readNodeAt(offset int64) (dtNode, error) {
retNode, _, err := t.readNode(t.data[offset:])
return retNode, err
}
func (t *DiskTree) readNode(in []byte) (dtNode, int, error) {
var out dtNode
// in buffer needs at least 36 bytes of data:
// 4bytes for key length, 32bytes for position and children
if len(in) < 36 {
return out, 0, io.EOF
}
rw := byteops.NewReadWriter(in)
keyLen := uint64(rw.ReadUint32())
copiedBytes, err := rw.CopyBytesFromBuffer(keyLen, nil)
if err != nil {
return out, int(rw.Position), fmt.Errorf("copy node key: %w", err)
}
out.key = copiedBytes
out.startPos = rw.ReadUint64()
out.endPos = rw.ReadUint64()
out.leftChild = int64(rw.ReadUint64())
out.rightChild = int64(rw.ReadUint64())
return out, int(rw.Position), nil
}
func (t *DiskTree) Seek(key []byte) (Node, error) {
if len(t.data) == 0 {
return Node{}, lsmkv.NotFound
}
return t.seekAt(0, key)
}
func (t *DiskTree) seekAt(offset int64, key []byte) (Node, error) {
node, err := t.readNodeAt(offset)
if err != nil {
return Node{}, err
}
self := Node{
Key: node.key,
Start: node.startPos,
End: node.endPos,
}
if bytes.Equal(key, node.key) {
return self, nil
}
if bytes.Compare(key, node.key) < 0 {
if node.leftChild < 0 {
return self, nil
}
left, err := t.seekAt(node.leftChild, key)
if err == nil {
return left, nil
}
if errors.Is(err, lsmkv.NotFound) {
return self, nil
}
return Node{}, err
} else {
if node.rightChild < 0 {
return Node{}, lsmkv.NotFound
}
return t.seekAt(node.rightChild, key)
}
}
// AllKeys is a relatively expensive operation as it basically does a full disk
// read of the index. It is meant for one of operations, such as initializing a
// segment where we need access to all keys, e.g. to build a bloom filter. This
// should not run at query time.
//
// The binary tree is traversed in Level-Order so keys have no meaningful
// order. Do not use this method if an In-Order traversal is required, but only
// for use cases who don't require a specific order, such as building a
// bloom filter.
func (t *DiskTree) AllKeys() ([][]byte, error) {
var out [][]byte
bufferPos := 0
for {
node, readLength, err := t.readNode(t.data[bufferPos:])
bufferPos += readLength
if err == io.EOF {
break
}
if err != nil {
return nil, err
}
out = append(out, node.key)
}
return out, nil
}
func (t *DiskTree) Size() int {
return len(t.data)
}
|