File size: 6,665 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package compressionhelpers

import (
	"encoding/binary"
	"errors"
	"fmt"
	"math"
	"math/rand"

	"github.com/weaviate/weaviate/adapters/repos/db/vector/hnsw/distancer"
)

type FilterFunc func([]float32) []float32

type KMeans struct {
	K                  int     // How many centroids
	DeltaThreshold     float32 // Used to stop fitting if there are not too much changes in the centroids anymore
	IterationThreshold int     // Used to stop fitting after a certain amount of iterations
	Distance           distancer.Provider
	centers            [][]float32 // The current centroids
	dimensions         int         // Dimensions of the data
	segment            int         // Segment where it operates

	data KMeansPartitionData // Non-persistent data used only during the fitting process
}

// String prints some minimal information about the encoder. This can be
// used for viability checks to see if the encoder was initialized
// correctly – for example after a restart.
func (k *KMeans) String() string {
	maxElem := 5
	var firstCenters []float32
	i := 0
	for _, center := range k.centers {
		for _, centerVal := range center {
			if i == maxElem {
				break
			}

			firstCenters = append(firstCenters, centerVal)
			i++
		}
		if i == maxElem {
			break
		}
	}
	return fmt.Sprintf("KMeans Encoder: K=%d, dim=%d, segment=%d first_center_truncated=%v", k.K, k.dimensions, k.segment, firstCenters)
}

type KMeansPartitionData struct {
	changes int        // How many vectors has jumped to a new cluster
	points  []uint64   // Cluster assigned to each point
	cc      [][]uint64 // Partition of the data into the clusters
}

func NewKMeans(k int, dimensions int, segment int) *KMeans {
	kMeans := &KMeans{
		K:                  k,
		DeltaThreshold:     0.01,
		IterationThreshold: 10,
		Distance:           distancer.NewL2SquaredProvider(),
		dimensions:         dimensions,
		segment:            segment,
	}
	return kMeans
}

func NewKMeansWithCenters(k int, dimensions int, segment int, centers [][]float32) *KMeans {
	kmeans := NewKMeans(k, dimensions, segment)
	kmeans.centers = centers
	return kmeans
}

func (m *KMeans) ExposeDataForRestore() []byte {
	ds := len(m.centers[0])
	len := 4 * m.K * ds
	buffer := make([]byte, len)
	for i := 0; i < len/4; i++ {
		binary.LittleEndian.PutUint32(buffer[i*4:(i+1)*4], math.Float32bits(m.centers[i/ds][i%ds]))
	}
	return buffer
}

func (m *KMeans) Add(x []float32) {
	// nothing to do here
}

func (m *KMeans) Centers() [][]float32 {
	return m.centers
}

func (m *KMeans) Encode(point []float32) byte {
	return byte(m.Nearest(point))
}

func (m *KMeans) Nearest(point []float32) uint64 {
	return m.NNearest(point, 1)[0]
}

func (m *KMeans) nNearest(point []float32, n int) ([]uint64, []float32) {
	mins := make([]uint64, n)
	minD := make([]float32, n)
	for i := range mins {
		mins[i] = 0
		minD[i] = math.MaxFloat32
	}
	filteredPoint := point[m.segment*m.dimensions : (m.segment+1)*m.dimensions]
	for i, c := range m.centers {
		distance, _, _ := m.Distance.SingleDist(filteredPoint, c)
		j := 0
		for (j < n) && minD[j] < distance {
			j++
		}
		if j < n {
			for l := n - 1; l >= j+1; l-- {
				mins[l] = mins[l-1]
				minD[l] = minD[l-1]
			}
			minD[j] = distance
			mins[j] = uint64(i)
		}
	}
	return mins, minD
}

func (m *KMeans) NNearest(point []float32, n int) []uint64 {
	nearest, _ := m.nNearest(point, n)
	return nearest
}

func (m *KMeans) initCenters(data [][]float32) {
	if len(m.centers) == m.K {
		return
	}
	m.centers = make([][]float32, 0, m.K)
	for i := 0; i < m.K; i++ {
		var vec []float32
		for vec == nil {
			vec = data[rand.Intn(len(data))]
		}
		vecCopy := make([]float32, m.dimensions)
		copy(vecCopy, vec[m.segment*m.dimensions:(m.segment+1)*m.dimensions])
		m.centers = append(m.centers, vecCopy)
	}
}

func (m *KMeans) recluster(data [][]float32) {
	for p := 0; p < len(data); p++ {
		point := data[p]
		if point == nil {
			continue
		}
		cis, _ := m.nNearest(point, 1)
		ci := cis[0]
		m.data.cc[ci] = append(m.data.cc[ci], uint64(p))
		if m.data.points[p] != ci {
			m.data.points[p] = ci
			m.data.changes++
		}
	}
}

func (m *KMeans) resortOnEmptySets(data [][]float32) {
	k64 := uint64(m.K)
	dataSize := len(data)
	for ci := uint64(0); ci < k64; ci++ {
		if len(m.data.cc[ci]) == 0 {
			var ri int
			for {
				ri = rand.Intn(dataSize)
				if data[ri] == nil {
					continue
				}
				if len(m.data.cc[m.data.points[ri]]) > 1 {
					break
				}
			}
			m.data.cc[ci] = append(m.data.cc[ci], uint64(ri))
			m.data.points[ri] = ci
			m.data.changes = dataSize
		}
	}
}

func (m *KMeans) recalcCenters(data [][]float32) {
	for index := 0; index < m.K; index++ {
		for j := range m.centers[index] {
			m.centers[index][j] = 0
		}
		size := len(m.data.cc[index])
		for _, ci := range m.data.cc[index] {
			vec := data[ci]
			v := vec[m.segment*m.dimensions : (m.segment+1)*m.dimensions]
			for j := 0; j < m.dimensions; j++ {
				m.centers[index][j] += v[j]
			}
		}
		for j := 0; j < m.dimensions; j++ {
			m.centers[index][j] /= float32(size)
		}
	}
}

func (m *KMeans) stopCondition(iterations int, dataSize int) bool {
	return iterations >= m.IterationThreshold ||
		m.data.changes < int(float32(dataSize)*m.DeltaThreshold)
}

func (m *KMeans) Fit(data [][]float32) error { // init centers using min/max per dimension
	dataSize := len(data)
	if dataSize < m.K {
		return errors.New("not enough data to fit kmeans")
	}
	m.initCenters(data)
	m.data.points = make([]uint64, dataSize)
	m.data.changes = 1

	for i := 0; m.data.changes > 0; i++ {
		m.data.changes = 0
		m.data.cc = make([][]uint64, m.K)
		for j := range m.data.cc {
			m.data.cc[j] = make([]uint64, 0)
		}

		m.recluster(data)
		m.resortOnEmptySets(data)
		if m.data.changes > 0 {
			m.recalcCenters(data)
		}

		if m.stopCondition(i, dataSize) {
			break
		}

	}

	m.clearData()
	return nil
}

func (m *KMeans) clearData() {
	m.data.points = nil
	m.data.cc = nil
}

func (m *KMeans) Center(point []float32) []float32 {
	return m.centers[m.Nearest(point)]
}

func (m *KMeans) Centroid(i byte) []float32 {
	return m.centers[i]
}