File size: 4,803 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package classification

import (
	"fmt"
	"time"

	libfilters "github.com/weaviate/weaviate/entities/filters"
	"github.com/weaviate/weaviate/entities/models"
	"github.com/weaviate/weaviate/entities/modulecapabilities"
	"github.com/weaviate/weaviate/entities/schema"
	"github.com/weaviate/weaviate/entities/search"
	libclassification "github.com/weaviate/weaviate/usecases/classification"
)

type tfidfScorer interface {
	GetAllTerms(docIndex int) []TermWithTfIdf
}

type contextualPreparationContext struct {
	tfidf   map[string]tfidfScorer    // map[basedOnProp]scorer
	targets map[string]search.Results // map[classifyProp]targets
}

func (c *Classifier) prepareContextualClassification(schema schema.Schema,
	vectorRepo modulecapabilities.VectorClassSearchRepo, params models.Classification,
	filters libclassification.Filters, items search.Results,
) (contextualPreparationContext, error) {
	p := &contextualPreparer{
		inputItems: items,
		params:     params,
		repo:       vectorRepo,
		filters:    filters,
		schema:     schema,
	}

	return p.do()
}

type contextualPreparer struct {
	inputItems []search.Result
	params     models.Classification
	repo       modulecapabilities.VectorClassSearchRepo
	filters    libclassification.Filters
	schema     schema.Schema
}

func (p *contextualPreparer) do() (contextualPreparationContext, error) {
	pctx := contextualPreparationContext{}

	targets, err := p.findTargetsForProps()
	if err != nil {
		return pctx, err
	}

	pctx.targets = targets

	tfidf, err := p.calculateTfidfForProps()
	if err != nil {
		return pctx, err
	}

	pctx.tfidf = tfidf

	return pctx, nil
}

func (p *contextualPreparer) calculateTfidfForProps() (map[string]tfidfScorer, error) {
	props := map[string]tfidfScorer{}

	for _, basedOnName := range p.params.BasedOnProperties {
		calc := NewTfIdfCalculator(len(p.inputItems))
		for _, obj := range p.inputItems {
			schemaMap, ok := obj.Schema.(map[string]interface{})
			if !ok {
				return nil, fmt.Errorf("no or incorrect schema map present on source object '%s': %T", obj.ID, obj.Schema)
			}

			var docCorpus string
			if basedOn, ok := schemaMap[basedOnName]; ok {
				basedOnString, ok := basedOn.(string)
				if !ok {
					return nil, fmt.Errorf("property '%s' present on %s, but of unexpected type: want string, got %T",
						basedOnName, obj.ID, basedOn)
				}

				docCorpus = basedOnString
			}

			calc.AddDoc(docCorpus)
		}

		calc.Calculate()
		props[basedOnName] = calc
	}

	return props, nil
}

func (p *contextualPreparer) findTargetsForProps() (map[string]search.Results, error) {
	targetsMap := map[string]search.Results{}

	for _, targetProp := range p.params.ClassifyProperties {
		class, err := p.classAndKindOfTarget(targetProp)
		if err != nil {
			return nil, fmt.Errorf("target prop '%s': find target class: %v", targetProp, err)
		}

		targets, err := p.findTargets(class)
		if err != nil {
			return nil, fmt.Errorf("target prop '%s': find targets: %v", targetProp, err)
		}

		targetsMap[targetProp] = targets
	}

	return targetsMap, nil
}

func (p *contextualPreparer) findTargets(class schema.ClassName) (search.Results, error) {
	ctx, cancel := contextWithTimeout(30 * time.Second)
	defer cancel()
	res, err := p.repo.VectorClassSearch(ctx, modulecapabilities.VectorClassSearchParams{
		Filters: p.filters.Target(),
		Pagination: &libfilters.Pagination{
			Limit: 10000,
		},
		ClassName:  string(class),
		Properties: []string{"id"},
	})
	if err != nil {
		return nil, fmt.Errorf("search closest target: %v", err)
	}

	if len(res) == 0 {
		return nil, fmt.Errorf("no potential targets found of class '%s'", class)
	}

	return res, nil
}

func (p *contextualPreparer) classAndKindOfTarget(propName string) (schema.ClassName, error) {
	prop, err := p.schema.GetProperty(schema.ClassName(p.params.Class), schema.PropertyName(propName))
	if err != nil {
		return "", fmt.Errorf("get target prop '%s': %v", propName, err)
	}

	dataType, err := p.schema.FindPropertyDataType(prop.DataType)
	if err != nil {
		return "", fmt.Errorf("extract dataType of prop '%s': %v", propName, err)
	}

	// we have passed validation, so it is safe to assume that this is a ref prop
	targetClasses := dataType.Classes()

	// len=1 is guaranteed from validation
	targetClass := targetClasses[0]

	return targetClass, nil
}