Spaces:
Running
Running
File size: 6,884 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package vectorizer
import (
"context"
"fmt"
"strings"
"unicode"
"unicode/utf8"
"github.com/weaviate/weaviate/entities/models"
txt2vecmodels "github.com/weaviate/weaviate/modules/text2vec-contextionary/additional/models"
)
type InspectorClient interface {
VectorForWord(ctx context.Context, word string) ([]float32, error)
VectorForCorpi(ctx context.Context, words []string,
overrides map[string]string) ([]float32, []txt2vecmodels.InterpretationSource, error)
NearestWordsByVector(ctx context.Context, vector []float32, n int, k int) ([]string, []float32, error)
IsWordPresent(ctx context.Context, word string) (bool, error)
}
type Inspector struct {
client InspectorClient
}
func NewInspector(client InspectorClient) *Inspector {
return &Inspector{client: client}
}
func (i *Inspector) GetWords(ctx context.Context, words string) (*models.C11yWordsResponse, error) {
wordArray, err := i.validateAndSplit(words)
if err != nil {
return nil, err
}
concatWord, err := i.concatWord(ctx, words, wordArray)
if err != nil {
return nil, err
}
individualWords, err := i.individualWords(ctx, wordArray)
if err != nil {
return nil, err
}
return &models.C11yWordsResponse{
ConcatenatedWord: concatWord,
IndividualWords: individualWords,
}, nil
}
func (i *Inspector) validateAndSplit(words string) ([]string, error) {
// set first character to lowercase
wordChars := []rune(words)
wordChars[0] = unicode.ToLower(wordChars[0])
words = string(wordChars)
for _, r := range words {
if !unicode.IsLetter(r) && !unicode.IsNumber(r) {
return nil, fmt.Errorf("invalid word input: words must only contain unicode letters and digits")
}
}
return split(words), nil
}
func (i *Inspector) concatWord(ctx context.Context, words string,
wordArray []string,
) (*models.C11yWordsResponseConcatenatedWord, error) {
if len(wordArray) < 2 {
// only build a concat response if we have more than a single word
return nil, nil
}
// join the words into a single corpus. While the contextionary also supports
// building a centroid from multiple corpi (thus []string for Corpi, an
// occurrence-based weighing can only happen within a corpus. It is thus - by
// far - preferable in this case, to concat the words into one corpus, rather
// than treating each word as its own.
corpus := strings.Join(wordArray, " ")
vector, _, err := i.client.VectorForCorpi(ctx, []string{corpus}, nil)
if err != nil {
return nil, err
}
nearestNeighbors, err := i.nearestNeighbors(ctx, vector)
if err != nil {
return nil, err
}
return &models.C11yWordsResponseConcatenatedWord{
ConcatenatedWord: words,
SingleWords: wordArray,
ConcatenatedVector: vector,
ConcatenatedNearestNeighbors: nearestNeighbors,
}, nil
}
func (i *Inspector) nearestNeighbors(ctx context.Context,
vector []float32,
) ([]*models.C11yNearestNeighborsItems0, error) {
// relate words of centroid
words, dists, err := i.client.NearestWordsByVector(ctx, vector, 12, 32)
if err != nil {
return nil, err
}
nearestNeighbors := []*models.C11yNearestNeighborsItems0{}
// loop over NN Idx' and append to the return object
for i, word := range words {
item := models.C11yNearestNeighborsItems0{
Word: word,
Distance: dists[i],
}
nearestNeighbors = append(nearestNeighbors, &item)
}
return nearestNeighbors, nil
}
func (i *Inspector) individualWords(ctx context.Context,
wordArray []string,
) ([]*models.C11yWordsResponseIndividualWordsItems0, error) {
var res []*models.C11yWordsResponseIndividualWordsItems0
for _, word := range wordArray {
iw, err := i.individualWord(ctx, word)
if err != nil {
return nil, fmt.Errorf("word '%s': %v", word, err)
}
res = append(res, iw)
}
return res, nil
}
func (i *Inspector) individualWord(ctx context.Context,
word string,
) (*models.C11yWordsResponseIndividualWordsItems0, error) {
ok, err := i.client.IsWordPresent(ctx, word)
if err != nil {
return nil, fmt.Errorf("could not check word presence: %v", err)
}
if !ok {
return i.individualWordNotPresent(word), nil
}
return i.individualWordPresent(ctx, word)
}
func (i *Inspector) individualWordNotPresent(word string) *models.C11yWordsResponseIndividualWordsItems0 {
return &models.C11yWordsResponseIndividualWordsItems0{
Word: word,
Present: false,
}
}
func (i *Inspector) individualWordPresent(ctx context.Context,
word string,
) (*models.C11yWordsResponseIndividualWordsItems0, error) {
info, err := i.individualWordInfo(ctx, word)
if err != nil {
return nil, err
}
return &models.C11yWordsResponseIndividualWordsItems0{
Word: word,
Present: true,
Info: info,
}, nil
}
func (i *Inspector) individualWordInfo(ctx context.Context,
word string,
) (*models.C11yWordsResponseIndividualWordsItems0Info, error) {
vector, err := i.client.VectorForWord(ctx, word)
if err != nil {
return nil, err
}
nns, err := i.nearestNeighbors(ctx, vector)
if err != nil {
return nil, err
}
return &models.C11yWordsResponseIndividualWordsItems0Info{
Vector: vector,
NearestNeighbors: nns,
}, nil
}
// Splits a CamelCase string to an array
// Based on: https://github.com/fatih/camelcase
func split(src string) (entries []string) {
// don't split invalid utf8
if !utf8.ValidString(src) {
return []string{src}
}
entries = []string{}
var runes [][]rune
lastClass := 0
class := 0
// split into fields based on class of unicode character
for _, r := range src {
switch true {
case unicode.IsLower(r):
class = 1
case unicode.IsUpper(r):
class = 2
case unicode.IsDigit(r):
class = 1
default:
class = 4
}
if class == lastClass {
runes[len(runes)-1] = append(runes[len(runes)-1], r)
} else {
runes = append(runes, []rune{r})
}
lastClass = class
}
// handle upper case -> lower case sequences, e.g.
// "PDFL", "oader" -> "PDF", "Loader"
for i := 0; i < len(runes)-1; i++ {
if unicode.IsUpper(runes[i][0]) && unicode.IsLower(runes[i+1][0]) {
runes[i+1] = append([]rune{runes[i][len(runes[i])-1]}, runes[i+1]...)
runes[i] = runes[i][:len(runes[i])-1]
}
}
// construct []string from results
for _, s := range runes {
if len(s) > 0 {
entries = append(entries, strings.ToLower(string(s)))
}
}
return
}
|