Spaces:
Running
Running
File size: 6,635 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package vectorizer
// TODO: This entire package should be part of the text2vec-contextionary
// module, if methods/objects in here are used from non-modular code, they
// probably shouldn't be in here
import (
"context"
"fmt"
"strings"
"github.com/fatih/camelcase"
"github.com/weaviate/weaviate/entities/models"
"github.com/weaviate/weaviate/entities/moduletools"
txt2vecmodels "github.com/weaviate/weaviate/modules/text2vec-contextionary/additional/models"
objectsvectorizer "github.com/weaviate/weaviate/usecases/modulecomponents/vectorizer"
)
// Vectorizer turns objects into vectors
type Vectorizer struct {
client client
objectVectorizer *objectsvectorizer.ObjectVectorizer
}
type ErrNoUsableWords struct {
Err error
}
func (e ErrNoUsableWords) Error() string {
return e.Err.Error()
}
func NewErrNoUsableWordsf(pattern string, args ...interface{}) ErrNoUsableWords {
return ErrNoUsableWords{Err: fmt.Errorf(pattern, args...)}
}
type client interface {
VectorForCorpi(ctx context.Context, corpi []string,
overrides map[string]string) ([]float32, []txt2vecmodels.InterpretationSource, error)
}
// IndexCheck returns whether a property of a class should be indexed
type ClassIndexCheck interface {
PropertyIndexed(property string) bool
VectorizeClassName() bool
VectorizePropertyName(propertyName string) bool
}
// New from c11y client
func New(client client) *Vectorizer {
return &Vectorizer{
client: client,
objectVectorizer: objectsvectorizer.New(),
}
}
func (v *Vectorizer) Texts(ctx context.Context, inputs []string,
cfg moduletools.ClassConfig,
) ([]float32, error) {
return v.Corpi(ctx, inputs)
}
// Object object to vector
func (v *Vectorizer) Object(ctx context.Context, object *models.Object,
objectDiff *moduletools.ObjectDiff, cfg moduletools.ClassConfig,
) error {
var overrides map[string]string
if object.VectorWeights != nil {
overrides = object.VectorWeights.(map[string]string)
}
icheck := NewIndexChecker(cfg)
vec, sources, err := v.object(ctx, object.Class, object.Properties, objectDiff, overrides,
icheck)
if err != nil {
return err
}
object.Vector = vec
if object.Additional == nil {
object.Additional = models.AdditionalProperties{}
}
object.Additional["interpretation"] = &txt2vecmodels.Interpretation{
Source: sourceFromInputElements(sources),
}
return nil
}
func (v *Vectorizer) object(ctx context.Context, className string,
schema interface{}, objDiff *moduletools.ObjectDiff, overrides map[string]string,
icheck ClassIndexCheck,
) ([]float32, []txt2vecmodels.InterpretationSource, error) {
corpi, vector, err := v.objectVectorizer.TextsOrVector(ctx, className, schema, objDiff, icheck)
if err != nil {
return nil, nil, err
}
// no property was changed, old vector can be used
if vector != nil {
// dont' re-vectorize
return vector, []txt2vecmodels.InterpretationSource{}, nil
}
// vectorize text
vector, ie, err := v.client.VectorForCorpi(ctx, []string{corpi}, overrides)
if err != nil {
switch err.(type) {
case ErrNoUsableWords:
return nil, nil, fmt.Errorf("The object is invalid, as weaviate could not extract "+
"any contextionary-valid words from it. This is the case when you have "+
"set the options 'vectorizeClassName: false' and 'vectorizePropertyName: false' in this class' schema definition "+
"and not a single property's value "+
"contains at least one contextionary-valid word. To fix this, you have several "+
"options:\n\n1.) Make sure that the schema class name or the set properties are "+
"a contextionary-valid term and include them in vectorization using the "+
"'vectorizeClassName' or 'vectorizePropertyName' setting. In this case the vector position "+
"will be composed of both the class/property names and the values for those fields. "+
"Even if no property values are contextionary-valid, the overall word corpus is still valid "+
"due to the contextionary-valid class/property names."+
"\n\n2.) Alternatively, if you do not want to include schema class/property names "+
"in vectorization, you must make sure that at least one text/string property contains "+
"at least one contextionary-valid word."+
"\n\n3.) If the word corpus weaviate extracted from your object "+
"(see below) does contain enough meaning to build a vector position, but the contextionary "+
"did not recognize the words, you can extend the contextionary using the "+
"REST API. This is the case when you use mostly industry-specific terms which are "+
"not known to the common language contextionary. Once extended, simply reimport this object."+
"\n\nThe following words were extracted from your object: %v"+
"\n\nTo learn more about the contextionary and how it behaves, check out: https://www.semi.technology/documentation/weaviate/current/contextionary.html"+
"\n\nOriginal error: %v", corpi, err)
default:
return nil, nil, fmt.Errorf("vectorizing object with corpus '%+v': %v", corpi, err)
}
}
return vector, ie, nil
}
// Corpi takes any list of strings and builds a common vector for all of them
func (v *Vectorizer) Corpi(ctx context.Context, corpi []string,
) ([]float32, error) {
for i, corpus := range corpi {
corpi[i] = camelCaseToLower(corpus)
}
vector, _, err := v.client.VectorForCorpi(ctx, corpi, nil)
if err != nil {
return nil, fmt.Errorf("vectorizing corpus '%+v': %v", corpi, err)
}
return vector, nil
}
func camelCaseToLower(in string) string {
parts := camelcase.Split(in)
var sb strings.Builder
for i, part := range parts {
if part == " " {
continue
}
if i > 0 {
sb.WriteString(" ")
}
sb.WriteString(strings.ToLower(part))
}
return sb.String()
}
func sourceFromInputElements(in []txt2vecmodels.InterpretationSource) []*txt2vecmodels.InterpretationSource {
out := make([]*txt2vecmodels.InterpretationSource, len(in))
for i, elem := range in {
out[i] = &txt2vecmodels.InterpretationSource{
Concept: elem.Concept,
Occurrence: elem.Occurrence,
Weight: float64(elem.Weight),
}
}
return out
}
|