File size: 6,123 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package clients

import (
	"bytes"
	"context"
	"encoding/json"
	"fmt"
	"io"
	"net/http"
	"time"

	"github.com/weaviate/weaviate/usecases/modulecomponents"

	"github.com/pkg/errors"
	"github.com/sirupsen/logrus"
	"github.com/weaviate/weaviate/modules/text2vec-huggingface/ent"
)

const (
	DefaultOrigin = "https://api-inference.huggingface.co"
	DefaultPath   = "pipeline/feature-extraction"
)

type embeddingsRequest struct {
	Inputs  []string `json:"inputs"`
	Options *options `json:"options,omitempty"`
}

type options struct {
	WaitForModel bool `json:"wait_for_model,omitempty"`
	UseGPU       bool `json:"use_gpu,omitempty"`
	UseCache     bool `json:"use_cache,omitempty"`
}

type embedding [][]float32

type embeddingBert [][][][]float32

type embeddingObject struct {
	Embeddings embedding `json:"embeddings"`
}

type huggingFaceApiError struct {
	Error         string   `json:"error"`
	EstimatedTime *float32 `json:"estimated_time,omitempty"`
	Warnings      []string `json:"warnings"`
}

type vectorizer struct {
	apiKey                string
	httpClient            *http.Client
	bertEmbeddingsDecoder *bertEmbeddingsDecoder
	logger                logrus.FieldLogger
}

func New(apiKey string, timeout time.Duration, logger logrus.FieldLogger) *vectorizer {
	return &vectorizer{
		apiKey: apiKey,
		httpClient: &http.Client{
			Timeout: timeout,
		},
		bertEmbeddingsDecoder: newBertEmbeddingsDecoder(),
		logger:                logger,
	}
}

func (v *vectorizer) Vectorize(ctx context.Context, input string,
	config ent.VectorizationConfig,
) (*ent.VectorizationResult, error) {
	return v.vectorize(ctx, v.getURL(config), input, v.getOptions(config))
}

func (v *vectorizer) VectorizeQuery(ctx context.Context, input string,
	config ent.VectorizationConfig,
) (*ent.VectorizationResult, error) {
	return v.vectorize(ctx, v.getURL(config), input, v.getOptions(config))
}

func (v *vectorizer) vectorize(ctx context.Context, url string,
	input string, options options,
) (*ent.VectorizationResult, error) {
	body, err := json.Marshal(embeddingsRequest{
		Inputs:  []string{input},
		Options: &options,
	})
	if err != nil {
		return nil, errors.Wrapf(err, "marshal body")
	}

	req, err := http.NewRequestWithContext(ctx, "POST", url,
		bytes.NewReader(body))
	if err != nil {
		return nil, errors.Wrap(err, "create POST request")
	}
	if apiKey := v.getApiKey(ctx); apiKey != "" {
		req.Header.Add("Authorization", fmt.Sprintf("Bearer %s", apiKey))
	}
	req.Header.Add("Content-Type", "application/json")

	res, err := v.httpClient.Do(req)
	if err != nil {
		return nil, errors.Wrap(err, "send POST request")
	}
	defer res.Body.Close()

	bodyBytes, err := io.ReadAll(res.Body)
	if err != nil {
		return nil, errors.Wrap(err, "read response body")
	}

	if err := checkResponse(res, bodyBytes); err != nil {
		return nil, err
	}

	vector, err := v.decodeVector(bodyBytes)
	if err != nil {
		return nil, errors.Wrap(err, "cannot decode vector")
	}

	return &ent.VectorizationResult{
		Text:       input,
		Dimensions: len(vector),
		Vector:     vector,
	}, nil
}

func checkResponse(res *http.Response, bodyBytes []byte) error {
	if res.StatusCode < 400 {
		return nil
	}

	var resBody huggingFaceApiError
	if err := json.Unmarshal(bodyBytes, &resBody); err != nil {
		return fmt.Errorf("unmarshal error response body: %v", string(bodyBytes))
	}

	message := fmt.Sprintf("failed with status: %d", res.StatusCode)
	if resBody.Error != "" {
		message = fmt.Sprintf("%s error: %v", message, resBody.Error)
		if resBody.EstimatedTime != nil {
			message = fmt.Sprintf("%s estimated time: %v", message, *resBody.EstimatedTime)
		}
		if len(resBody.Warnings) > 0 {
			message = fmt.Sprintf("%s warnings: %v", message, resBody.Warnings)
		}
	}

	if res.StatusCode == http.StatusInternalServerError {
		message = fmt.Sprintf("connection to HuggingFace %v", message)
	}

	return errors.New(message)
}

func (v *vectorizer) decodeVector(bodyBytes []byte) ([]float32, error) {
	var emb embedding
	if err := json.Unmarshal(bodyBytes, &emb); err != nil {
		var embObject embeddingObject
		if err := json.Unmarshal(bodyBytes, &embObject); err != nil {
			var embBert embeddingBert
			if err := json.Unmarshal(bodyBytes, &embBert); err != nil {
				return nil, errors.Wrap(err, "unmarshal response body")
			}

			if len(embBert) == 1 && len(embBert[0]) == 1 {
				return v.bertEmbeddingsDecoder.calculateVector(embBert[0][0])
			}

			return nil, errors.New("unprocessable response body")
		}
		if len(embObject.Embeddings) == 1 {
			return embObject.Embeddings[0], nil
		}

		return nil, errors.New("unprocessable response body")
	}

	if len(emb) == 1 {
		return emb[0], nil
	}

	return nil, errors.New("unprocessable response body")
}

func (v *vectorizer) getApiKey(ctx context.Context) string {
	if len(v.apiKey) > 0 {
		return v.apiKey
	}
	key := "X-Huggingface-Api-Key"
	apiKey := ctx.Value(key)
	// try getting header from GRPC if not successful
	if apiKey == nil {
		apiKey = modulecomponents.GetValueFromGRPC(ctx, key)
	}

	if apiKeyHeader, ok := apiKey.([]string); ok &&
		len(apiKeyHeader) > 0 && len(apiKeyHeader[0]) > 0 {
		return apiKeyHeader[0]
	}
	return ""
}

func (v *vectorizer) getOptions(config ent.VectorizationConfig) options {
	return options{
		WaitForModel: config.WaitForModel,
		UseGPU:       config.UseGPU,
		UseCache:     config.UseCache,
	}
}

func (v *vectorizer) getURL(config ent.VectorizationConfig) string {
	if config.EndpointURL != "" {
		return config.EndpointURL
	}

	return fmt.Sprintf("%s/%s/%s", DefaultOrigin, DefaultPath, config.Model)
}