File size: 12,851 Bytes
a7f7eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import weaviate

from sentence_transformers import SentenceTransformer
from langchain_community.document_loaders import BSHTMLLoader
from pathlib import Path
from lxml import html
import logging
from semantic_text_splitter import HuggingFaceTextSplitter
from tokenizers import Tokenizer
import json
import os
import re
import logging

import llama_cpp
from llama_cpp import Llama
import ipywidgets as widgets
import time
from IPython.display import display, clear_output

weaviate_logger = logging.getLogger("httpx")
weaviate_logger.setLevel(logging.WARNING)

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)



#################################################################
# Connect to Weaviate vector database.
#################################################################
client = ""
def connectToWeaviateDB():
    ######################################################
    # Connect to the Weaviate vector database.
    logger.info("#### Create Weaviate db client connection.")
    client = weaviate.connect_to_custom(
        http_host="127.0.0.1",
        http_port=8080,
        http_secure=False,
        grpc_host="127.0.0.1",
        grpc_port=50051,
        grpc_secure=False
    )
    client.connect() 


#######################################################
# Read each text input file, parse it into a document,
# chunk it, collect chunks and document name.
#######################################################
webpageDocNames       = []
page_contentArray     = []
webpageTitles         = []
webpageChunks         = []
webpageChunksDocNames = []

def readParseChunkFiles():
    logger.info("#### Read and chunk input text files.")
    for filename in os.listdir(pathString):
        logger.info(filename)
        path = Path(pathString + "/" + filename)
        filename = filename.rstrip(".html")
        webpageDocNames.append(filename)
        htmlLoader = BSHTMLLoader(path,"utf-8") 
        htmlData = htmlLoader.load()

        title   = htmlData[0].metadata['title']
        page_content = htmlData[0].page_content
        
        # Clean data. Remove multiple newlines, etc.
        page_content = re.sub(r'\n+', '\n',page_content)
        
        page_contentArray.append(page_content);
        webpageTitles.append    (title)
        max_tokens = 1000
        tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
        logger.debug(f"### tokenizer: {tokenizer}")
        splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
        chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)

        chunks = []
        for chnk in chunksOnePage:
            logger.debug(f"#### chnk in file: {chnk}")
            chunks.append(chnk)
            logger.debug(f"chunks: {chunks}")
        webpageChunks.append(chunks)
        webpageChunksDocNames.append(filename + "Chunks")

        logger.debug(f"### filename, title: {filename}, {title}")
        
    logger.debug(f"### webpageDocNames: {webpageDocNames}")

#################################################################
# Create the chunks collection for the Weaviate database.
#################################################################
def createChunksCollection():
    logger.info("#### createChunksCollection() entered.")
    if client.collections.exists("Chunks"):
        client.collections.delete("Chunks")

    class_obj = {
        "class": "Chunks",
        "description": "Collection for document chunks.",
        "vectorizer": "text2vec-transformers",
        "moduleConfig": {
            "text2vec-transformers": {
                "vectorizeClassName": True
            }
        },
        "vectorIndexType": "hnsw",  
        "vectorIndexConfig": {
            "distance": "cosine",
        },
        "properties": [
            {
                "name": "chunk",
                "dataType": ["text"],
                "description": "Single webpage chunk.",
                "vectorizer": "text2vec-transformers",
                "moduleConfig": {
                    "text2vec-transformers": {
                      "vectorizePropertyName": False,
                      "skip": False,
                      "tokenization": "lowercase"
                    }
                }
            },
            {
                "name": "chunk_index",
                "dataType": ["int"]
            },
            {
                "name": "webpage",
                "dataType": ["Documents"],
                "description": "Webpage content chunks.",
            
                "invertedIndexConfig": {
                    "bm25": {
                        "b": 0.75,
                        "k1": 1.2
                    }
                }  
            }
        ]
    }
    return(client.collections.create_from_dict(class_obj))


#####################################################################
# Create the document collection for the Weaviate database.
#####################################################################
def createWebpageCollection():
    logger.info("#### createWebpageCollection() entered.")
    if client.collections.exists("Documents"):
        client.collections.delete("Documents")

    class_obj = {
      "class": "Documents",
      "description": "For first attempt at loading a Weviate database.",
      "vectorizer": "text2vec-transformers",
      "moduleConfig": {
        "text2vec-transformers": {
        "vectorizeClassName": False
        }
      },
      "vectorIndexType": "hnsw",  
      "vectorIndexConfig": {
          "distance": "cosine",
      },
      "properties": [
            {
                "name": "title",
                "dataType": ["text"],
                "description": "HTML doc title.",
                "vectorizer": "text2vec-transformers",
                "moduleConfig": {
                    "text2vec-transformers": {
                        "vectorizePropertyName": True,
                        "skip": False,
                        "tokenization": "lowercase"
                    }
                },
                "invertedIndexConfig": {
                    "bm25": {
                        "b": 0.75,
                        "k1": 1.2
                    },
                }
            },
            {
                "name": "content",
                "dataType": ["text"],
                "description": "HTML page content.",
                "moduleConfig": {
                    "text2vec-transformers": {
                        "vectorizePropertyName": True,
                        "tokenization": "whitespace"
                    }
                }
            }
        ]  
    }
    return(client.collections.create_from_dict(class_obj))


#################################################################
# Create document and chunk objects in database.
#################################################################
def createDatabaseObjects():
    logger.info("#### Create page/doc and chunk db objects.")
    for i, className in enumerate(webpageDocNames):
        title = webpageTitles[i]
        logger.debug(f"## className, title: {className}, {title}")
        # Create Webpage Object
        page_content = page_contentArray[i]
        # Insert the document.
        wpCollectionObj_uuid = wpCollection.data.insert(
          {
            "name": className,
            "title": title,
            "content": page_content
          }
        )        
        
        # Insert the chunks for the document.
        for i2, chunk in enumerate(webpageChunks[i]):
            chunk_uuid = wpChunkCollection.data.insert(
              {
                "title": title,
                "chunk": chunk,
                "chunk_index": i2,
                "references":
                {
                  "webpage": wpCollectionObj_uuid
                }
              }
            )


#################################################################
# Create display widgets.
#################################################################
output_widget = ""
systemTextArea = ""
userTextArea = ""
ragPromptTextArea = ""
responseTextArea = ""
selectRag = ""
submitButton = ""
def createWidgets():
    output_widget = widgets.Output()
    with output_widget:
        print("### Create widgets entered.")

    systemTextArea = widgets.Textarea(
        value='',
        placeholder='Enter System Prompt.',
        description='Sys Prompt: ',
        disabled=False,
        layout=widgets.Layout(width='300px', height='80px')
    )

    userTextArea = widgets.Textarea(
        value='',
        placeholder='Enter User Prompt.',
        description='User Prompt: ',
        disabled=False,
        layout=widgets.Layout(width='435px', height='110px')
    )

    ragPromptTextArea = widgets.Textarea(
        value='',
        placeholder='App generated prompt with RAG information.',
        description='RAG Prompt: ',
        disabled=False,
        layout=widgets.Layout(width='580px', height='180px')
    )

    responseTextArea = widgets.Textarea(
        value='',
        placeholder='LLM generated response.',
        description='LLM Resp: ',
        disabled=False,
        layout=widgets.Layout(width='780px', height='200px')
    )

    selectRag = widgets.Checkbox(
        value=False,
        description='Use RAG',
        disabled=False
    )

    submitButton = widgets.Button(
        description='Run Model.',
        disabled=False,
        button_style='', # 'success', 'info', 'warning', 'danger' or ''
        tooltip='Click',
        icon='check' # (FontAwesome names without the `fa-` prefix)
    )


######################################################################
# MAINLINE
######################################################################
logger.info("#### MAINLINE ENTERED.")

#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML" 
pathString = "/app/inputDocs"
chunks = []
webpageDocNames = []
page_contentArray = []
webpageChunks = []
webpageTitles = []
webpageChunksDocNames = []

#connectToWeaviateDB()
logger.info("#### Create Weaviate db client connection.")
client = weaviate.connect_to_custom(
    http_host="127.0.0.1",
    http_port=8080,
    http_secure=False,
    grpc_host="127.0.0.1",
    grpc_port=50051,
    grpc_secure=False
)
client.connect() 

readParseChunkFiles()
wpCollection = createWebpageCollection()
wpChunkCollection = createChunksCollection()

#createDatabaseObjects()
logger.info("#### Create page/doc and chunk db objects.")
    for i, className in enumerate(webpageDocNames):
        title = webpageTitles[i]
        logger.debug(f"## className, title: {className}, {title}")
        # Create Webpage Object
        page_content = page_contentArray[i]
        # Insert the document.
        wpCollectionObj_uuid = wpCollection.data.insert(
          {
            "name": className,
            "title": title,
            "content": page_content
          }
        )        
        
        # Insert the chunks for the document.
        for i2, chunk in enumerate(webpageChunks[i]):
            chunk_uuid = wpChunkCollection.data.insert(
              {
                "title": title,
                "chunk": chunk,
                "chunk_index": i2,
                "references":
                {
                  "webpage": wpCollectionObj_uuid
                }
              }
            )

###############################################################################
# text contains prompt for vector DB.
text = "human-made computer cognitive ability"


###############################################################################
# Initial the the sentence transformer and encode the query prompt.
logger.info(f"#### Encode text query prompt to create vectors. {text}")
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')

vector = model.encode(text)
vectorList = []

logger.debug("#### Print vectors.")
for vec in vector:
    vectorList.append(vec)
logger.debug(f"vectorList: {vectorList[2]}")

# Fetch chunks and print chunks.
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
semChunks = wpChunkCollection.query.near_vector(
    near_vector=vectorList,
    distance=0.7,
    limit=3
)
logger.debug(f"### semChunks[0]: {semChunks}")

# Print chunks, corresponding document and document title.
logger.info("#### Print individual retrieved chunks.")
for chunk in enumerate(semChunks.objects):
    logger.info(f"#### chunk: {chunk}")
    webpage_uuid = chunk[1].properties['references']['webpage']
    logger.info(f"webpage_uuid: {webpage_uuid}")
    wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
    logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")

logger.info("#### Closing client db connection.")
client.close()

logger.info("#### Program terminating.")