Spaces:
Running
Running
File size: 3,540 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package classification
import (
"testing"
"github.com/stretchr/testify/assert"
"github.com/weaviate/weaviate/entities/models"
)
func Test_RefMeta(t *testing.T) {
t.Run("without a losing group", func(t *testing.T) {
source := NeighborRef{
WinningCount: 3,
OverallCount: 3,
LosingCount: 0,
Distances: NeighborRefDistances{
ClosestWinningDistance: 0.1,
ClosestOverallDistance: 0.1,
MeanWinningDistance: 0.2,
},
}
expected := &models.ReferenceMetaClassification{
ClosestWinningDistance: 0.1,
ClosestOverallDistance: 0.1,
MeanWinningDistance: 0.2,
WinningDistance: 0.2, // deprecated, must be removed in 0.23.0
OverallCount: 3,
WinningCount: 3,
LosingCount: 0,
}
actual := source.Meta()
assert.InDelta(t, expected.ClosestWinningDistance, actual.ClosestWinningDistance, 0.001)
assert.InDelta(t, expected.ClosestOverallDistance, actual.ClosestOverallDistance, 0.001)
assert.InDelta(t, expected.MeanWinningDistance, actual.MeanWinningDistance, 0.001)
assert.InDelta(t, expected.WinningDistance, actual.WinningDistance, 0.001)
assert.Equal(t, expected.OverallCount, actual.OverallCount)
assert.Equal(t, expected.WinningCount, actual.WinningCount)
assert.Equal(t, expected.LosingCount, actual.LosingCount)
})
t.Run("with a losing group", func(t *testing.T) {
source := NeighborRef{
WinningCount: 3,
OverallCount: 5,
LosingCount: 2,
Distances: NeighborRefDistances{
ClosestWinningDistance: 0.1,
ClosestOverallDistance: 0.1,
MeanWinningDistance: 0.2,
ClosestLosingDistance: ptFloat32(0.15),
MeanLosingDistance: ptFloat32(0.25),
},
}
expected := &models.ReferenceMetaClassification{
ClosestOverallDistance: 0.1,
ClosestWinningDistance: 0.1,
MeanWinningDistance: 0.2,
WinningDistance: 0.2, // deprecated, must be removed in 0.23.0
ClosestLosingDistance: ptFloat64(0.15),
MeanLosingDistance: ptFloat64(0.25),
LosingDistance: ptFloat64(0.25), // deprecated, must be removed in 0.23.0
OverallCount: 5,
WinningCount: 3,
LosingCount: 2,
}
actual := source.Meta()
assert.InDelta(t, expected.ClosestOverallDistance, actual.ClosestOverallDistance, 0.001)
assert.InDelta(t, expected.ClosestWinningDistance, actual.ClosestWinningDistance, 0.001)
assert.InDelta(t, expected.MeanWinningDistance, actual.MeanWinningDistance, 0.001)
assert.InDelta(t, expected.WinningDistance, actual.WinningDistance, 0.001)
assert.InDelta(t, *expected.ClosestLosingDistance, *actual.ClosestLosingDistance, 0.001)
assert.InDelta(t, *expected.MeanLosingDistance, *actual.MeanLosingDistance, 0.001)
assert.InDelta(t, *expected.LosingDistance, *actual.LosingDistance, 0.001)
assert.Equal(t, expected.OverallCount, actual.OverallCount)
assert.Equal(t, expected.OverallCount, actual.OverallCount)
assert.Equal(t, expected.WinningCount, actual.WinningCount)
assert.Equal(t, expected.LosingCount, actual.LosingCount)
})
}
func ptFloat32(in float32) *float32 {
return &in
}
|