Spaces:
Running
Running
File size: 9,940 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package hybrid
import (
"context"
"fmt"
"github.com/weaviate/weaviate/adapters/handlers/graphql/local/common_filters"
"github.com/weaviate/weaviate/entities/autocut"
"github.com/sirupsen/logrus"
"github.com/weaviate/weaviate/entities/additional"
"github.com/weaviate/weaviate/entities/search"
"github.com/weaviate/weaviate/entities/searchparams"
"github.com/weaviate/weaviate/entities/storobj"
)
const DefaultLimit = 100
type Params struct {
*searchparams.HybridSearch
Keyword *searchparams.KeywordRanking
Class string
Autocut int
}
// Result facilitates the pairing of a search result with its internal doc id.
//
// This type is key in generalising hybrid search across different use cases.
// Some use cases require a full search result (Get{} queries) and others need
// only a doc id (Aggregate{}) which the search.Result type does not contain.
type Result struct {
DocID uint64
*search.Result
}
type Results []*Result
func (res Results) SearchResults() []search.Result {
out := make([]search.Result, len(res))
for i, r := range res {
out[i] = *r.Result
}
return out
}
// sparseSearchFunc is the signature of a closure which performs sparse search.
// Any package which wishes use hybrid search must provide this. The weights are
// used in calculating the final scores of the result set.
type sparseSearchFunc func() (results []*storobj.Object, weights []float32, err error)
// denseSearchFunc is the signature of a closure which performs dense search.
// A search vector argument is required to pass along to the vector index.
// Any package which wishes use hybrid search must provide this The weights are
// used in calculating the final scores of the result set.
type denseSearchFunc func(searchVector []float32) (results []*storobj.Object, weights []float32, err error)
// postProcFunc takes the results of the hybrid search and applies some transformation.
// This is optionally provided, and allows the caller to somehow change the nature of
// the result set. For example, Get{} queries sometimes require resolving references,
// which is implemented by doing the reference resolution within a postProcFunc closure.
type postProcFunc func(hybridResults Results) (postProcResults []search.Result, err error)
type modulesProvider interface {
VectorFromInput(ctx context.Context,
className string, input string) ([]float32, error)
}
// Search executes sparse and dense searches and combines the result sets using Reciprocal Rank Fusion
func Search(ctx context.Context, params *Params, logger logrus.FieldLogger, sparseSearch sparseSearchFunc, denseSearch denseSearchFunc, postProc postProcFunc, modules modulesProvider) (Results, error) {
var (
found [][]*Result
weights []float64
names []string
)
if params.Query != "" {
alpha := params.Alpha
if alpha < 1 {
res, err := processSparseSearch(sparseSearch())
if err != nil {
return nil, err
}
found = append(found, res)
weights = append(weights, 1-alpha)
names = append(names, "keyword")
}
if alpha > 0 {
res, err := processDenseSearch(ctx, denseSearch, params, modules)
if err != nil {
return nil, err
}
found = append(found, res)
weights = append(weights, alpha)
names = append(names, "vector")
}
} else {
ss := params.SubSearches
// To catch error if ss is empty
_, err := decideSearchVector(ctx, params, modules)
if err != nil {
return nil, err
}
for _, subsearch := range ss.([]searchparams.WeightedSearchResult) {
res, name, weight, err := handleSubSearch(ctx, &subsearch, denseSearch, sparseSearch, params, modules)
if err != nil {
return nil, err
}
if res == nil {
continue
}
found = append(found, res)
weights = append(weights, weight)
names = append(names, name)
}
}
if len(weights) != len(found) {
return nil, fmt.Errorf("length of weights and results do not match for hybrid search %v vs. %v", len(weights), len(found))
}
var fused []*Result
if params.FusionAlgorithm == common_filters.HybridRankedFusion {
fused = FusionRanked(weights, found, names)
} else if params.FusionAlgorithm == common_filters.HybridRelativeScoreFusion {
fused = FusionRelativeScore(weights, found, names)
} else {
return nil, fmt.Errorf("unknown ranking algorithm %v for hybrid search", params.FusionAlgorithm)
}
if postProc != nil {
sr, err := postProc(fused)
if err != nil {
return nil, fmt.Errorf("hybrid search post-processing: %w", err)
}
fused = fused[:len(sr)]
for i := range fused {
fused[i].Result = &(sr[i])
}
}
if params.Autocut > 0 {
scores := make([]float32, len(fused))
for i := range fused {
scores[i] = fused[i].Score
}
cutOff := autocut.Autocut(scores, params.Autocut)
fused = fused[:cutOff]
}
return fused, nil
}
func processSparseSearch(results []*storobj.Object, weights []float32, err error) ([]*Result, error) {
if err != nil {
return nil, fmt.Errorf("sparse search: %w", err)
}
out := make([]*Result, len(results))
for i, obj := range results {
sr := obj.SearchResultWithDist(additional.Properties{}, weights[i])
sr.SecondarySortValue = sr.Score
sr.ExplainScore = "(bm25)" + sr.ExplainScore
out[i] = &Result{obj.DocID(), &sr}
}
return out, nil
}
func processDenseSearch(ctx context.Context, denseSearch denseSearchFunc, params *Params, modules modulesProvider) ([]*Result, error) {
vector, err := decideSearchVector(ctx, params, modules)
if err != nil {
return nil, err
}
res, dists, err := denseSearch(vector)
if err != nil {
return nil, fmt.Errorf("dense search: %w", err)
}
out := make([]*Result, len(res))
for i, obj := range res {
sr := obj.SearchResultWithDist(additional.Properties{}, dists[i])
sr.SecondarySortValue = 1 - sr.Dist
sr.ExplainScore = fmt.Sprintf(
"(vector) %v %v ", truncateVectorString(10, vector),
res[i].ExplainScore())
out[i] = &Result{obj.DocID(), &sr}
}
return out, nil
}
func handleSubSearch(ctx context.Context, subsearch *searchparams.WeightedSearchResult, denseSearch denseSearchFunc, sparseSearch sparseSearchFunc, params *Params, modules modulesProvider) ([]*Result, string, float64, error) {
switch subsearch.Type {
case "bm25":
fallthrough
case "sparseSearch":
return sparseSubSearch(subsearch, params, sparseSearch)
case "nearText":
return nearTextSubSearch(ctx, subsearch, denseSearch, params, modules)
case "nearVector":
return nearVectorSubSearch(subsearch, denseSearch)
default:
return nil, "unknown", 0, fmt.Errorf("unknown hybrid search type %q", subsearch.Type)
}
}
func sparseSubSearch(subsearch *searchparams.WeightedSearchResult, params *Params, sparseSearch sparseSearchFunc) ([]*Result, string, float64, error) {
sp := subsearch.SearchParams.(searchparams.KeywordRanking)
params.Keyword = &sp
res, dists, err := sparseSearch()
if err != nil {
return nil, "", 0, fmt.Errorf("sparse subsearch: %w", err)
}
out := make([]*Result, len(res))
for i, obj := range res {
sr := obj.SearchResultWithDist(additional.Properties{}, dists[i])
out[i] = &Result{obj.DocID(), &sr}
}
return out, "bm25f", subsearch.Weight, nil
}
func nearTextSubSearch(ctx context.Context, subsearch *searchparams.WeightedSearchResult, denseSearch denseSearchFunc, params *Params, modules modulesProvider) ([]*Result, string, float64, error) {
sp := subsearch.SearchParams.(searchparams.NearTextParams)
if modules == nil {
return nil, "", 0, nil
}
vector, err := vectorFromModuleInput(ctx, params.Class, sp.Values[0], modules)
if err != nil {
return nil, "", 0, err
}
res, dists, err := denseSearch(vector)
if err != nil {
return nil, "", 0, err
}
out := make([]*Result, len(res))
for i, obj := range res {
sr := obj.SearchResultWithDist(additional.Properties{}, dists[i])
out[i] = &Result{obj.DocID(), &sr}
}
return out, "vector,nearText", subsearch.Weight, nil
}
func nearVectorSubSearch(subsearch *searchparams.WeightedSearchResult, denseSearch denseSearchFunc) ([]*Result, string, float64, error) {
sp := subsearch.SearchParams.(searchparams.NearVector)
res, dists, err := denseSearch(sp.Vector)
if err != nil {
return nil, "", 0, err
}
out := make([]*Result, len(res))
for i, obj := range res {
sr := obj.SearchResultWithDist(additional.Properties{}, dists[i])
out[i] = &Result{obj.DocID(), &sr}
}
return out, "vector,nearVector", subsearch.Weight, nil
}
func decideSearchVector(ctx context.Context, params *Params, modules modulesProvider) ([]float32, error) {
var (
vector []float32
err error
)
if params.Vector != nil && len(params.Vector) != 0 {
vector = params.Vector
} else {
if modules != nil {
vector, err = vectorFromModuleInput(ctx, params.Class, params.Query, modules)
if err != nil {
return nil, err
}
}
}
return vector, nil
}
func vectorFromModuleInput(ctx context.Context, class, input string, modules modulesProvider) ([]float32, error) {
vector, err := modules.VectorFromInput(ctx, class, input)
if err != nil {
return nil, fmt.Errorf("get vector input from modules provider: %w", err)
}
return vector, nil
}
func truncateVectorString(maxLength int, vector []float32) string {
if len(vector) <= maxLength {
return fmt.Sprintf("%v", vector)
}
return fmt.Sprintf("%v...", vector[:maxLength])
}
|