File size: 9,392 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package hnsw

import (
	"flag"
	"io"
	"net/http"
	"net/url"
	"os"
	"path/filepath"
	"sort"
	"strconv"
	"strings"
	"testing"
	"time"

	"github.com/pkg/errors"
	"github.com/stretchr/testify/require"
	"github.com/weaviate/weaviate/adapters/repos/db/vector/compressionhelpers"
	"gopkg.in/yaml.v2"
)

var download = flag.Bool("download", false, "download datasets if not found locally")

var datasets = map[string]string{
	"random-xs":              "datasets/big-ann-benchmarks/random10000/data_10000_20",
	"random-xs-clustered":    "datasets/big-ann-benchmarks/random-clustered10000/clu-random.fbin.crop_nb_10000",
	"msturing-1M":            "datasets/big-ann-benchmarks/MSTuringANNS/base1b.fbin.crop_nb_1000000",
	"msturing-10M":           "datasets/big-ann-benchmarks/MSTuringANNS/base1b.fbin.crop_nb_10000000",
	"msspacev-1M":            "datasets/big-ann-benchmarks/MSSPACEV1B/spacev1b_base.i8bin.crop_nb_1000000",
	"msspacev-10M":           "datasets/big-ann-benchmarks/MSSPACEV1B/spacev1b_base.i8bin.crop_nb_10000000",
	"msturing-10M-clustered": "datasets/big-ann-benchmarks/MSTuring-10M-clustered/msturing-10M-clustered.fbin",
}

var queries = map[string]string{
	"random-xs":              "datasets/big-ann-benchmarks/random10000/queries_1000_20",
	"random-xs-clustered":    "datasets/big-ann-benchmarks/random-clustered10000/queries_1000_20.fbin",
	"msturing-1M":            "datasets/big-ann-benchmarks/MSTuringANNS/query100K.fbin",
	"msturing-10M":           "datasets/big-ann-benchmarks/MSTuringANNS/query100K.fbin",
	"msspacev-1M":            "datasets/big-ann-benchmarks/MSSPACEV1B/query.i8bin",
	"msspacev-10M":           "datasets/big-ann-benchmarks/MSSPACEV1B/query.i8bin",
	"msturing-10M-clustered": "datasets/big-ann-benchmarks/MSTuring-10M-clustered/testQuery10K.fbin",
}

func BenchmarkHnswNeurips23(b *testing.B) {
	runbooks := []string{
		"datasets/neurips23/simple_runbook.yaml",
		"datasets/neurips23/clustered_runbook.yaml",
	}

	type datasetPoints struct {
		dataset string
		points  int
	}

	readDatasets := make(map[datasetPoints][][]float32)

	for _, runbookFile := range runbooks {
		b.Run(runbookFile, func(b *testing.B) {
			runbook := readRunbook(b, runbookFile)

			for _, step := range runbook.Steps {
				b.Run(step.Dataset, func(b *testing.B) {
					// Read the dataset if we haven't already
					vectors, ok := readDatasets[datasetPoints{step.Dataset, step.MaxPts}]
					if !ok {
						file, ok := datasets[step.Dataset]
						if !ok {
							b.Skipf("Neurips23 dataset %s not found", step.Dataset)
						}

						if _, err := os.Stat(file); err != nil {
							if !*download {
								b.Skipf(`Neurips23 dataset %s not found.

Run test with -download to automatically download the dataset.

Ex: go test -v -benchmem -bench ^BenchmarkHnswNeurips23$ -download`, step.Dataset)
							}
							downloadDataset(b, step.Dataset)
						}

						readDatasets[datasetPoints{step.Dataset, step.MaxPts}] = readBigAnnDataset(b, file, step.MaxPts)
						vectors = readDatasets[datasetPoints{step.Dataset, step.MaxPts}]
					}

					var queryVectors [][]float32

					b.ResetTimer()

					for i := 0; i < b.N; i++ {
						index := createEmptyHnswIndexForTests(b, idVectorSize(len(vectors[0])))

						for _, op := range step.Operations {
							switch op.Operation {
							case "insert":
								compressionhelpers.Concurrently(uint64(op.End-op.Start), func(i uint64) {
									err := index.Add(uint64(op.Start+int(i)), vectors[op.Start+int(i)])
									require.NoError(b, err)
								})
							case "delete":
								compressionhelpers.Concurrently(uint64(op.End-op.Start), func(i uint64) {
									err := index.Delete(uint64(op.Start + int(i)))
									require.NoError(b, err)
								})
							case "search":
								if len(queryVectors) == 0 {
									file, ok := queries[step.Dataset]
									if !ok {
										b.Errorf("query file: not found for %s dataset", step.Dataset)
									}

									queryVectors = readBigAnnDataset(b, file, 0)
								}

								compressionhelpers.Concurrently(uint64(len(queryVectors)), func(i uint64) {
									_, _, err := index.SearchByVector(queryVectors[i], 0, nil)
									require.NoError(b, err)
								})
							default:
								b.Errorf("Unknown operation %s", op.Operation)
							}
						}
					}
				})
			}
		})
	}
}

func downloadDataset(t testing.TB, name string) {
	t.Helper()

	ds, ok := datasets[name]
	if !ok {
		t.Fatalf("Dataset %s not found", name)
	}

	qs, ok := queries[name]
	if !ok {
		t.Fatalf("Query file not found for %s dataset", name)
	}

	for _, f := range []string{ds, qs} {
		downloadDatasetFile(t, f)
	}
}

func downloadDatasetFile(t testing.TB, file string) {
	t.Helper()

	if _, err := os.Stat(file); err == nil {
		return
	}

	err := os.MkdirAll(filepath.Dir(file), 0o755)
	require.NoError(t, err)

	path := strings.TrimPrefix(file, "datasets/")

	u, err := url.JoinPath("https://storage.googleapis.com/ann-datasets/", path)
	require.NoError(t, err)

	t.Logf("Downloading dataset from %s", u)

	client := http.Client{
		Timeout: 60 * time.Second,
	}

	resp, err := client.Get(u)
	require.NoError(t, err)
	defer resp.Body.Close()

	if resp.StatusCode != http.StatusOK {
		t.Fatalf("Could not download dataset. Status code: %d", resp.StatusCode)
	}

	f, err := os.Create(file)
	require.NoError(t, err)
	defer f.Close()

	_, err = io.Copy(f, resp.Body)
	require.NoError(t, err)

	t.Logf("Downloaded dataset %s", file)
}

func readBigAnnDataset(t testing.TB, file string, maxObjects int) [][]float32 {
	t.Helper()

	var vectors [][]float32

	f, err := os.Open(file)
	if err != nil {
		panic(errors.Wrap(err, "Could not open SIFT file"))
	}
	defer f.Close()

	fi, err := f.Stat()
	if err != nil {
		panic(errors.Wrap(err, "Could not get SIFT file properties"))
	}
	fileSize := fi.Size()

	b := make([]byte, 4)

	// The data is a binary file containing either floating point vectors or int8 vectors
	// It starts with 8 bytes of header data
	// The first 4 bytes are the number of vectors in the file
	// The second 4 bytes are the dimensionality of the vectors in the file
	// If the file is in fbin format, the vector data needs to be converted from bytes to float.
	// If the file is in i8bin format, the vector data needs to be converted from bytes to int8 then to float.

	// The first 4 bytes are the number of vectors in the file
	_, err = f.Read(b)
	require.NoError(t, err)
	n := int32FromBytes(b)

	// The second 4 bytes are the dimensionality of the vectors in the file
	_, err = f.Read(b)
	require.NoError(t, err)
	d := int32FromBytes(b)

	var bytesPerVector int
	switch {
	case strings.Contains(file, "i8bin"):
		bytesPerVector = 1
	case strings.Contains(file, "fbin"):
		fallthrough
	default:
		bytesPerVector = 4
	}

	require.Equal(t, 8+n*d*bytesPerVector, int(fileSize))

	vectorBytes := make([]byte, d*bytesPerVector)
	if maxObjects > 0 && maxObjects < n {
		n = maxObjects
	}

	for i := 0; i < n; i++ {
		_, err = f.Read(vectorBytes)
		if err == io.EOF {
			break
		}
		require.NoError(t, err)

		vectorFloat := make([]float32, 0, d)
		for j := 0; j < d; j++ {
			start := j * bytesPerVector
			var f float32
			if bytesPerVector == 1 {
				f = float32(vectorBytes[start])
			} else {
				f = float32FromBytes(vectorBytes[start : start+bytesPerVector])
			}

			vectorFloat = append(vectorFloat, f)
		}

		vectors = append(vectors, vectorFloat)
	}

	if maxObjects > 0 {
		require.Equal(t, maxObjects, len(vectors))
	}

	return vectors
}

type runbook struct {
	Steps []runbookStep
}
type runbookStep struct {
	Dataset    string
	MaxPts     int
	Operations []runbookOperation
}

type runbookOperation struct {
	Operation string
	Start     int
	End       int
}

func readRunbook(t testing.TB, file string) *runbook {
	f, err := os.Open(file)
	require.NoError(t, err, "Could not open runbook file")
	defer f.Close()

	d := yaml.NewDecoder(f)

	var runbook runbook

	var m map[string]map[string]any
	err = d.Decode(&m)
	require.NoError(t, err)

	var datasets []string
	for datasetName := range m {
		datasets = append(datasets, datasetName)
	}

	sort.Strings(datasets)

	for _, datasetName := range datasets {
		stepInfo := m[datasetName]
		var step runbookStep

		step.Dataset = datasetName
		step.MaxPts = stepInfo["max_pts"].(int)
		i := 1
		for {
			s := strconv.Itoa(i)
			if _, ok := stepInfo[s]; !ok {
				break
			}

			opInfo := stepInfo[s].(map[any]any)

			var op runbookOperation
			op.Operation = opInfo["operation"].(string)
			if op.Operation == "insert" || op.Operation == "delete" {
				op.Start = opInfo["start"].(int)
				op.End = opInfo["end"].(int)
			}

			step.Operations = append(step.Operations, op)

			i++
		}

		runbook.Steps = append(runbook.Steps, step)
	}

	return &runbook
}