File size: 3,151 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package hnsw

import (
	"context"

	"github.com/pkg/errors"
	"github.com/weaviate/weaviate/adapters/repos/db/helpers"
	"github.com/weaviate/weaviate/adapters/repos/db/priorityqueue"
	"github.com/weaviate/weaviate/entities/storobj"
)

func (h *hnsw) selectNeighborsHeuristic(input *priorityqueue.Queue[any],
	max int, denyList helpers.AllowList,
) error {
	if input.Len() < max {
		return nil
	}

	// TODO, if this solution stays we might need something with fewer allocs
	ids := make([]uint64, input.Len())

	closestFirst := h.pools.pqHeuristic.GetMin(input.Len())
	i := uint64(0)
	for input.Len() > 0 {
		elem := input.Pop()
		closestFirst.InsertWithValue(elem.ID, elem.Dist, i)
		ids[i] = elem.ID
		i++
	}

	var returnList []priorityqueue.Item[uint64]

	if h.compressed.Load() {
		bag := h.compressor.NewBag()
		for _, id := range ids {
			err := bag.Load(context.Background(), id)
			if err != nil {
				return err
			}
		}

		returnList = h.pools.pqItemSlice.Get().([]priorityqueue.Item[uint64])
		for closestFirst.Len() > 0 && len(returnList) < max {
			curr := closestFirst.Pop()
			if denyList != nil && denyList.Contains(curr.ID) {
				continue
			}
			distToQuery := curr.Dist

			good := true
			for _, item := range returnList {
				peerDist, err := bag.Distance(curr.ID, item.ID)
				if err != nil {
					return err
				}

				if peerDist < distToQuery {
					good = false
					break
				}
			}

			if good {
				returnList = append(returnList, curr)
			}

		}
	} else {

		vecs, errs := h.multiVectorForID(context.TODO(), ids)

		returnList = h.pools.pqItemSlice.Get().([]priorityqueue.Item[uint64])

		for closestFirst.Len() > 0 && len(returnList) < max {
			curr := closestFirst.Pop()
			if denyList != nil && denyList.Contains(curr.ID) {
				continue
			}
			distToQuery := curr.Dist

			currVec := vecs[curr.Value]
			if err := errs[curr.Value]; err != nil {
				var e storobj.ErrNotFound
				if errors.As(err, &e) {
					h.handleDeletedNode(e.DocID)
					continue
				} else {
					// not a typed error, we can recover from, return with err
					return errors.Wrapf(err,
						"unrecoverable error for docID %d", curr.ID)
				}
			}
			good := true
			for _, item := range returnList {
				peerDist, _, _ := h.distancerProvider.SingleDist(currVec,
					vecs[item.Value])

				if peerDist < distToQuery {
					good = false
					break
				}
			}

			if good {
				returnList = append(returnList, curr)
			}

		}
	}

	h.pools.pqHeuristic.Put(closestFirst)

	for _, retElem := range returnList {
		input.Insert(retElem.ID, retElem.Dist)
	}

	// rewind and return to pool
	returnList = returnList[:0]

	//nolint:staticcheck
	h.pools.pqItemSlice.Put(returnList)

	return nil
}