Spaces:
Running
Running
File size: 12,252 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package classification
import (
"fmt"
"math"
"sort"
"strings"
"time"
"github.com/go-openapi/strfmt"
"github.com/weaviate/weaviate/entities/additional"
"github.com/weaviate/weaviate/entities/models"
"github.com/weaviate/weaviate/entities/modulecapabilities"
"github.com/weaviate/weaviate/entities/schema"
"github.com/weaviate/weaviate/entities/schema/crossref"
"github.com/weaviate/weaviate/entities/search"
)
// TODO: all of this must be served by the module in the future
type contextualItemClassifier struct {
item search.Result
itemIndex int
params models.Classification
settings *ParamsContextual
classifier *Classifier
writer modulecapabilities.Writer
schema schema.Schema
filters modulecapabilities.Filters
context contextualPreparationContext
vectorizer vectorizer
words []string
rankedWords map[string][]scoredWord // map[targetProp]words as scoring/ranking is per target
}
func (c *Classifier) extendItemWithObjectMeta(item *search.Result,
params models.Classification, classified []string,
) {
// don't overwrite existing non-classification meta info
if item.AdditionalProperties == nil {
item.AdditionalProperties = models.AdditionalProperties{}
}
item.AdditionalProperties["classification"] = additional.Classification{
ID: params.ID,
Scope: params.ClassifyProperties,
ClassifiedFields: classified,
Completed: strfmt.DateTime(time.Now()),
}
}
// makeClassifyItemContextual is a higher-order function to produce the actual
// classify function, but additionally allows us to inject data which is valid
// for the entire run, such as tf-idf data and target vectors
func (c *Classifier) makeClassifyItemContextual(schema schema.Schema, preparedContext contextualPreparationContext) func(search.Result,
int, models.Classification, modulecapabilities.Filters, modulecapabilities.Writer) error {
return func(item search.Result, itemIndex int, params models.Classification,
filters modulecapabilities.Filters, writer modulecapabilities.Writer,
) error {
vectorizer := c.vectorizer
run := &contextualItemClassifier{
item: item,
itemIndex: itemIndex,
params: params,
settings: params.Settings.(*ParamsContextual), // safe assertion after parsing
classifier: c,
writer: writer,
schema: schema,
filters: filters,
context: preparedContext,
vectorizer: vectorizer,
rankedWords: map[string][]scoredWord{},
}
err := run.do()
if err != nil {
return fmt.Errorf("text2vec-contextionary-contextual: %v", err)
}
return nil
}
}
func (c *contextualItemClassifier) do() error {
var classified []string
for _, propName := range c.params.ClassifyProperties {
current, err := c.property(propName)
if err != nil {
return fmt.Errorf("prop '%s': %v", propName, err)
}
// append list of actually classified (can differ from scope!) properties,
// so we can build the object meta information
classified = append(classified, current)
}
c.classifier.extendItemWithObjectMeta(&c.item, c.params, classified)
err := c.writer.Store(c.item)
if err != nil {
return fmt.Errorf("store %s/%s: %v", c.item.ClassName, c.item.ID, err)
}
return nil
}
func (c *contextualItemClassifier) property(propName string) (string, error) {
targets, ok := c.context.targets[propName]
if !ok || len(targets) == 0 {
return "", fmt.Errorf("have no potential targets for property '%s'", propName)
}
schemaMap, ok := c.item.Schema.(map[string]interface{})
if !ok {
return "", fmt.Errorf("no or incorrect schema map present on source c.object '%s': %T", c.item.ID, c.item.Schema)
}
// Limitation for now, basedOnProperty is always 0
basedOnName := c.params.BasedOnProperties[0]
basedOn, ok := schemaMap[basedOnName]
if !ok {
return "", fmt.Errorf("property '%s' not found on source c.object '%s': %T", propName, c.item.ID, c.item.Schema)
}
basedOnString, ok := basedOn.(string)
if !ok {
return "", fmt.Errorf("property '%s' present on %s, but of unexpected type: want string, got %T",
basedOnName, c.item.ID, basedOn)
}
words := newSplitter().Split(basedOnString)
c.words = words
ctx, cancel := contextWithTimeout(10 * time.Second)
defer cancel()
vectors, err := c.vectorizer.MultiVectorForWord(ctx, words)
if err != nil {
return "", fmt.Errorf("vectorize individual words: %v", err)
}
scoredWords, err := c.scoreWords(words, vectors, propName)
if err != nil {
return "", fmt.Errorf("score words: %v", err)
}
c.rankedWords[propName] = c.rankAndDedup(scoredWords)
corpus, boosts, err := c.buildBoostedCorpus(propName)
if err != nil {
return "", fmt.Errorf("build corpus: %v", err)
}
ctx, cancel = contextWithTimeout(10 * time.Second)
defer cancel()
vector, err := c.vectorizer.VectorOnlyForCorpi(ctx, []string{corpus}, boosts)
if err != nil {
return "", fmt.Errorf("vectorize corpus: %v", err)
}
target, distance, err := c.findClosestTarget(vector, propName)
if err != nil {
return "", fmt.Errorf("find closest target: %v", err)
}
targetBeacon := crossref.New("localhost", target.ClassName, target.ID).String()
c.item.Schema.(map[string]interface{})[propName] = models.MultipleRef{
&models.SingleRef{
Beacon: strfmt.URI(targetBeacon),
Classification: &models.ReferenceMetaClassification{
WinningDistance: float64(distance),
},
},
}
return propName, nil
}
func (c *contextualItemClassifier) findClosestTarget(query []float32, targetProp string) (*search.Result, float32, error) {
minimum := float32(100000)
var prediction search.Result
for _, item := range c.context.targets[targetProp] {
dist, err := cosineDist(query, item.Vector)
if err != nil {
return nil, -1, fmt.Errorf("calculate distance: %v", err)
}
if dist < minimum {
minimum = dist
prediction = item
}
}
return &prediction, minimum, nil
}
func (c *contextualItemClassifier) buildBoostedCorpus(targetProp string) (string, map[string]string, error) {
var corpus []string
for _, word := range c.words {
word = strings.ToLower(word)
tfscores := c.context.tfidf[c.params.BasedOnProperties[0]].GetAllTerms(c.itemIndex)
// dereferencing these optional parameters is safe, as defaults are
// explicitly set in classifier.Schedule()
if c.isInIgPercentile(int(*c.settings.InformationGainCutoffPercentile), word, targetProp) &&
c.isInTfPercentile(tfscores, int(*c.settings.TfidfCutoffPercentile), word) {
corpus = append(corpus, word)
}
}
// use minimum words if len is currently less
limit := int(*c.settings.MinimumUsableWords)
if len(corpus) < limit {
corpus = c.getTopNWords(targetProp, limit)
}
corpusStr := strings.ToLower(strings.Join(corpus, " "))
boosts := c.boostByInformationGain(targetProp, int(*c.settings.InformationGainCutoffPercentile),
float32(*c.settings.InformationGainMaximumBoost))
return corpusStr, boosts, nil
}
func (c *contextualItemClassifier) boostByInformationGain(targetProp string, percentile int,
maxBoost float32,
) map[string]string {
cutoff := int(float32(percentile) / float32(100) * float32(len(c.rankedWords[targetProp])))
out := make(map[string]string, cutoff)
for i, word := range c.rankedWords[targetProp][:cutoff] {
boost := 1 - float32(math.Log(float64(i)/float64(cutoff)))*float32(1)
if math.IsInf(float64(boost), 1) || boost > maxBoost {
boost = maxBoost
}
out[word.word] = fmt.Sprintf("%f * w", boost)
}
return out
}
type scoredWord struct {
word string
distance float32
informationGain float32
}
func (c *contextualItemClassifier) getTopNWords(targetProp string, limit int) []string {
words := c.rankedWords[targetProp]
if len(words) < limit {
limit = len(words)
}
out := make([]string, limit)
for i := 0; i < limit; i++ {
out[i] = words[i].word
}
return out
}
func (c *contextualItemClassifier) rankAndDedup(in []*scoredWord) []scoredWord {
return c.dedup(c.rank(in))
}
func (c *contextualItemClassifier) dedup(in []scoredWord) []scoredWord {
// simple dedup since it's already ordered, we only need to check the previous element
indexOut := 0
out := make([]scoredWord, len(in))
for i, elem := range in {
if i == 0 {
out[indexOut] = elem
indexOut++
continue
}
if elem.word == out[indexOut-1].word {
continue
}
out[indexOut] = elem
indexOut++
}
return out[:indexOut]
}
func (c *contextualItemClassifier) rank(in []*scoredWord) []scoredWord {
i := 0
filtered := make([]scoredWord, len(in))
for _, w := range in {
if w == nil {
continue
}
filtered[i] = *w
i++
}
out := filtered[:i]
sort.Slice(out, func(a, b int) bool { return out[a].informationGain > out[b].informationGain })
return out
}
func (c *contextualItemClassifier) scoreWords(words []string, vectors [][]float32,
targetProp string,
) ([]*scoredWord, error) {
if len(words) != len(vectors) {
return nil, fmt.Errorf("fatal: word list (l=%d) and vector list (l=%d) have different lengths",
len(words), len(vectors))
}
out := make([]*scoredWord, len(words))
for i := range words {
word := strings.ToLower(words[i])
sw, err := c.scoreWord(word, vectors[i], targetProp)
if err != nil {
return nil, fmt.Errorf("score word '%s': %v", word, err)
}
// accept nil-entries for now, they will be removed in ranking/deduping
out[i] = sw
}
return out, nil
}
func (c *contextualItemClassifier) scoreWord(word string, vector []float32,
targetProp string,
) (*scoredWord, error) {
var all []float32
minimum := float32(1000000.00)
if vector == nil {
return nil, nil
}
targets, ok := c.context.targets[targetProp]
if !ok {
return nil, fmt.Errorf("fatal: targets for prop '%s' not found", targetProp)
}
for _, target := range targets {
dist, err := cosineDist(vector, target.Vector)
if err != nil {
return nil, fmt.Errorf("calculate cosine distance: %v", err)
}
all = append(all, dist)
if dist < minimum {
minimum = dist
}
}
return &scoredWord{word: word, distance: minimum, informationGain: avg(all) - minimum}, nil
}
func avg(in []float32) float32 {
var sum float32
for _, curr := range in {
sum += curr
}
return sum / float32(len(in))
}
func (c *contextualItemClassifier) isInIgPercentile(percentage int, needle string, target string) bool {
cutoff := int(float32(percentage) / float32(100) * float32(len(c.rankedWords[target])))
// no need to check if key exists, guaranteed from run
selection := c.rankedWords[target][:cutoff]
for _, hay := range selection {
if needle == hay.word {
return true
}
}
return false
}
func (c *contextualItemClassifier) isInTfPercentile(tf []TermWithTfIdf, percentage int, needle string) bool {
cutoff := int(float32(percentage) / float32(100) * float32(len(tf)))
selection := tf[:cutoff]
for _, hay := range selection {
if needle == hay.Term {
return true
}
}
return false
}
func cosineSim(a, b []float32) (float32, error) {
if len(a) != len(b) {
return 0, fmt.Errorf("vectors have different dimensions")
}
var (
sumProduct float64
sumASquare float64
sumBSquare float64
)
for i := range a {
sumProduct += float64(a[i] * b[i])
sumASquare += float64(a[i] * a[i])
sumBSquare += float64(b[i] * b[i])
}
return float32(sumProduct / (math.Sqrt(sumASquare) * math.Sqrt(sumBSquare))), nil
}
func cosineDist(a, b []float32) (float32, error) {
sim, err := cosineSim(a, b)
if err != nil {
return 0, err
}
return 1 - sim, nil
}
|