File size: 7,056 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package vectorizer

import (
	"context"
	"fmt"
	"strings"

	"github.com/fatih/camelcase"
	"github.com/pkg/errors"
	"github.com/sirupsen/logrus"
	"github.com/weaviate/weaviate/entities/models"
	"github.com/weaviate/weaviate/entities/moduletools"
	"github.com/weaviate/weaviate/entities/schema"
)

type ConfigValidator struct {
	remote RemoteClient
	logger logrus.FieldLogger
}

type IndexChecker interface {
	VectorizeClassName() bool
	VectorizePropertyName(propName string) bool
	PropertyIndexed(propName string) bool
}

type RemoteClient interface {
	IsStopWord(ctx context.Context, word string) (bool, error)
	IsWordPresent(ctx context.Context, word string) (bool, error)
}

func NewConfigValidator(rc RemoteClient,

	logger logrus.FieldLogger,

) *ConfigValidator {
	return &ConfigValidator{remote: rc, logger: logger}
}

func (cv *ConfigValidator) Do(ctx context.Context, class *models.Class,
	cfg moduletools.ClassConfig, icheck IndexChecker,
) error {
	err := cv.validateClassName(ctx, class.Class, icheck.VectorizeClassName())
	if err != nil {
		return fmt.Errorf("invalid class name: %w", err)
	}

	for _, prop := range class.Properties {
		if !icheck.PropertyIndexed(prop.Name) {
			continue
		}

		err = cv.validatePropertyName(ctx, prop.Name,
			icheck.VectorizePropertyName(prop.Name))
		if err != nil {
			return errors.Wrapf(err, "class %q: invalid property name", class.Class)
		}
	}

	if err := cv.validateIndexState(ctx, class, icheck); err != nil {
		return errors.Wrap(err, "invalid combination of properties")
	}

	cv.checkForPossibilityOfDuplicateVectors(ctx, class, icheck)

	return nil
}

func (cv *ConfigValidator) validateClassName(ctx context.Context, className string,
	vectorizeClass bool,
) error {
	// class name
	if !vectorizeClass {
		// if the user chooses not to vectorize the class, we don't need to check
		// if its c11y-valid or not
		return nil
	}

	camelParts := camelcase.Split(className)
	stopWordsFound := 0
	for _, part := range camelParts {
		word := strings.ToLower(part)
		sw, err := cv.remote.IsStopWord(ctx, word)
		if err != nil {
			return fmt.Errorf("check stopword: %v", err)
		}

		if sw {
			stopWordsFound++
			continue
		}

		present, err := cv.remote.IsWordPresent(ctx, word)
		if err != nil {
			return fmt.Errorf("check word presence: %v", err)
		}

		if !present {
			return fmt.Errorf("could not find the word '%s' from the class name '%s' "+
				"in the contextionary", word, className)
		}
	}

	if len(camelParts) == stopWordsFound {
		return fmt.Errorf("className '%s' consists of only stopwords and is therefore "+
			"not a contextionary-valid class name, make sure at least one word in the "+
			"classname is not a stop word", className)
	}

	return nil
}

func (cv *ConfigValidator) validatePropertyName(ctx context.Context,
	propertyName string, vectorize bool,
) error {
	if !vectorize {
		// user does not want to vectorize this property name, so we don't have to
		// validate it
		return nil
	}

	camelParts := camelcase.Split(propertyName)
	stopWordsFound := 0
	for _, part := range camelParts {
		word := strings.ToLower(part)
		sw, err := cv.remote.IsStopWord(ctx, word)
		if err != nil {
			return fmt.Errorf("check stopword: %v", err)
		}

		if sw {
			stopWordsFound++
			continue
		}

		present, err := cv.remote.IsWordPresent(ctx, word)
		if err != nil {
			return fmt.Errorf("check word presence: %v", err)
		}

		if !present {
			return fmt.Errorf("could not find word '%s' of the property '%s' in the "+
				"contextionary", word, propertyName)
		}
	}

	if len(camelParts) == stopWordsFound {
		return fmt.Errorf("the propertyName '%s' consists of only stopwords and is "+
			"therefore not a contextionary-valid property name, make sure at least one word "+
			"in the property name is not a stop word", propertyName)
	}

	return nil
}

func (cv *ConfigValidator) validateIndexState(ctx context.Context,
	class *models.Class, icheck IndexChecker,
) error {
	if icheck.VectorizeClassName() {
		// if the user chooses to vectorize the classname, vector-building will
		// always be possible, no need to investigate further

		return nil
	}

	// search if there is at least one indexed, string/text or string/text[]
	// prop. If found pass validation
	for _, prop := range class.Properties {
		if len(prop.DataType) < 1 {
			return errors.Errorf("property %s must have at least one datatype: "+
				"got %v", prop.Name, prop.DataType)
		}

		if prop.DataType[0] != string(schema.DataTypeText) &&
			prop.DataType[0] != string(schema.DataTypeTextArray) {
			// we can only vectorize text-like props
			continue
		}

		if icheck.PropertyIndexed(prop.Name) {
			// found at least one, this is a valid schema
			return nil
		}
	}

	return fmt.Errorf("invalid properties: didn't find a single property which is " +
		"of type string or text and is not excluded from indexing. In addition the " +
		"class name is excluded from vectorization as well, meaning that it cannot be " +
		"used to determine the vector position. To fix this, set 'vectorizeClassName' " +
		"to true if the class name is contextionary-valid. Alternatively add at least " +
		"contextionary-valid text/string property which is not excluded from " +
		"indexing.")
}

func (cv *ConfigValidator) checkForPossibilityOfDuplicateVectors(
	ctx context.Context, class *models.Class, icheck IndexChecker,
) {
	if !icheck.VectorizeClassName() {
		// if the user choses not to vectorize the class name, this means they must
		// have chosen something else to vectorize, otherwise the validation would
		// have error'd before we ever got here. We can skip further checking.

		return
	}

	// search if there is at least one indexed, string/text prop. If found exit
	for _, prop := range class.Properties {
		// length check skipped, because validation has already passed
		if prop.DataType[0] != string(schema.DataTypeText) {
			// we can only vectorize text-like props
			continue
		}

		if icheck.PropertyIndexed(prop.Name) {
			// found at least one
			return
		}
	}

	cv.logger.WithField("module", "text2vec-contextionary").
		WithField("class", class.Class).
		Warnf("text2vec-contextionary: Class %q does not have any properties "+
			"indexed (or only non text-properties indexed) and the vector position is "+
			"only determined by the class name. Each object will end up with the same "+
			"vector which leads to a severe performance penalty on imports. Consider "+
			"setting vectorIndexConfig.skip=true for this property", class.Class)
}