Spaces:
Running
Running
File size: 8,489 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package clients
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"net/url"
"time"
"github.com/weaviate/weaviate/usecases/modulecomponents"
"github.com/pkg/errors"
"github.com/sirupsen/logrus"
"github.com/weaviate/weaviate/modules/text2vec-openai/ent"
)
type embeddingsRequest struct {
Input []string `json:"input"`
Model string `json:"model,omitempty"`
}
type embedding struct {
Object string `json:"object"`
Data []embeddingData `json:"data,omitempty"`
Error *openAIApiError `json:"error,omitempty"`
}
type embeddingData struct {
Object string `json:"object"`
Index int `json:"index"`
Embedding []float32 `json:"embedding"`
}
type openAIApiError struct {
Message string `json:"message"`
Type string `json:"type"`
Param string `json:"param"`
Code json.Number `json:"code"`
}
func buildUrl(baseURL, resourceName, deploymentID string, isAzure bool) (string, error) {
if isAzure {
host := baseURL
if host == "" || host == "https://api.openai.com" {
// Fall back to old assumption
host = "https://" + resourceName + ".openai.azure.com"
}
path := "openai/deployments/" + deploymentID + "/embeddings"
queryParam := "api-version=2022-12-01"
return fmt.Sprintf("%s/%s?%s", host, path, queryParam), nil
}
host := baseURL
path := "/v1/embeddings"
return url.JoinPath(host, path)
}
type vectorizer struct {
openAIApiKey string
openAIOrganization string
azureApiKey string
httpClient *http.Client
buildUrlFn func(baseURL, resourceName, deploymentID string, isAzure bool) (string, error)
logger logrus.FieldLogger
}
func New(openAIApiKey, openAIOrganization, azureApiKey string, timeout time.Duration, logger logrus.FieldLogger) *vectorizer {
return &vectorizer{
openAIApiKey: openAIApiKey,
openAIOrganization: openAIOrganization,
azureApiKey: azureApiKey,
httpClient: &http.Client{
Timeout: timeout,
},
buildUrlFn: buildUrl,
logger: logger,
}
}
func (v *vectorizer) Vectorize(ctx context.Context, input string,
config ent.VectorizationConfig,
) (*ent.VectorizationResult, error) {
return v.vectorize(ctx, []string{input}, v.getModelString(config.Type, config.Model, "document", config.ModelVersion), config)
}
func (v *vectorizer) VectorizeQuery(ctx context.Context, input []string,
config ent.VectorizationConfig,
) (*ent.VectorizationResult, error) {
return v.vectorize(ctx, input, v.getModelString(config.Type, config.Model, "query", config.ModelVersion), config)
}
func (v *vectorizer) vectorize(ctx context.Context, input []string, model string, config ent.VectorizationConfig) (*ent.VectorizationResult, error) {
body, err := json.Marshal(v.getEmbeddingsRequest(input, model, config.IsAzure))
if err != nil {
return nil, errors.Wrap(err, "marshal body")
}
endpoint, err := v.buildURL(ctx, config)
if err != nil {
return nil, errors.Wrap(err, "join OpenAI API host and path")
}
req, err := http.NewRequestWithContext(ctx, "POST", endpoint,
bytes.NewReader(body))
if err != nil {
return nil, errors.Wrap(err, "create POST request")
}
apiKey, err := v.getApiKey(ctx, config.IsAzure)
if err != nil {
return nil, errors.Wrap(err, "API Key")
}
req.Header.Add(v.getApiKeyHeaderAndValue(apiKey, config.IsAzure))
if openAIOrganization := v.getOpenAIOrganization(ctx); openAIOrganization != "" {
req.Header.Add("OpenAI-Organization", openAIOrganization)
}
req.Header.Add("Content-Type", "application/json")
res, err := v.httpClient.Do(req)
if err != nil {
return nil, errors.Wrap(err, "send POST request")
}
defer res.Body.Close()
bodyBytes, err := io.ReadAll(res.Body)
if err != nil {
return nil, errors.Wrap(err, "read response body")
}
var resBody embedding
if err := json.Unmarshal(bodyBytes, &resBody); err != nil {
return nil, errors.Wrap(err, "unmarshal response body")
}
if res.StatusCode != 200 || resBody.Error != nil {
return nil, v.getError(res.StatusCode, resBody.Error, config.IsAzure)
}
texts := make([]string, len(resBody.Data))
embeddings := make([][]float32, len(resBody.Data))
for i := range resBody.Data {
texts[i] = resBody.Data[i].Object
embeddings[i] = resBody.Data[i].Embedding
}
return &ent.VectorizationResult{
Text: texts,
Dimensions: len(resBody.Data[0].Embedding),
Vector: embeddings,
}, nil
}
func (v *vectorizer) buildURL(ctx context.Context, config ent.VectorizationConfig) (string, error) {
baseURL, resourceName, deploymentID, isAzure := config.BaseURL, config.ResourceName, config.DeploymentID, config.IsAzure
if headerBaseURL := v.getValueFromContext(ctx, "X-Openai-Baseurl"); headerBaseURL != "" {
baseURL = headerBaseURL
}
return v.buildUrlFn(baseURL, resourceName, deploymentID, isAzure)
}
func (v *vectorizer) getError(statusCode int, resBodyError *openAIApiError, isAzure bool) error {
endpoint := "OpenAI API"
if isAzure {
endpoint = "Azure OpenAI API"
}
if resBodyError != nil {
return fmt.Errorf("connection to: %s failed with status: %d error: %v", endpoint, statusCode, resBodyError.Message)
}
return fmt.Errorf("connection to: %s failed with status: %d", endpoint, statusCode)
}
func (v *vectorizer) getEmbeddingsRequest(input []string, model string, isAzure bool) embeddingsRequest {
if isAzure {
return embeddingsRequest{Input: input}
}
return embeddingsRequest{Input: input, Model: model}
}
func (v *vectorizer) getApiKeyHeaderAndValue(apiKey string, isAzure bool) (string, string) {
if isAzure {
return "api-key", apiKey
}
return "Authorization", fmt.Sprintf("Bearer %s", apiKey)
}
func (v *vectorizer) getOpenAIOrganization(ctx context.Context) string {
if value := v.getValueFromContext(ctx, "X-Openai-Organization"); value != "" {
return value
}
return v.openAIOrganization
}
func (v *vectorizer) getApiKey(ctx context.Context, isAzure bool) (string, error) {
var apiKey, envVar string
if isAzure {
apiKey = "X-Azure-Api-Key"
envVar = "AZURE_APIKEY"
if len(v.azureApiKey) > 0 {
return v.azureApiKey, nil
}
} else {
apiKey = "X-Openai-Api-Key"
envVar = "OPENAI_APIKEY"
if len(v.openAIApiKey) > 0 {
return v.openAIApiKey, nil
}
}
return v.getApiKeyFromContext(ctx, apiKey, envVar)
}
func (v *vectorizer) getApiKeyFromContext(ctx context.Context, apiKey, envVar string) (string, error) {
if apiKeyValue := v.getValueFromContext(ctx, apiKey); apiKeyValue != "" {
return apiKeyValue, nil
}
return "", fmt.Errorf("no api key found neither in request header: %s nor in environment variable under %s", apiKey, envVar)
}
func (v *vectorizer) getValueFromContext(ctx context.Context, key string) string {
if value := ctx.Value(key); value != nil {
if keyHeader, ok := value.([]string); ok && len(keyHeader) > 0 && len(keyHeader[0]) > 0 {
return keyHeader[0]
}
}
// try getting header from GRPC if not successful
if apiKey := modulecomponents.GetValueFromGRPC(ctx, key); len(apiKey) > 0 && len(apiKey[0]) > 0 {
return apiKey[0]
}
return ""
}
func (v *vectorizer) getModelString(docType, model, action, version string) string {
if version == "002" {
return v.getModel002String(model)
}
return v.getModel001String(docType, model, action)
}
func (v *vectorizer) getModel001String(docType, model, action string) string {
modelBaseString := "%s-search-%s-%s-001"
if action == "document" {
if docType == "code" {
return fmt.Sprintf(modelBaseString, docType, model, "code")
}
return fmt.Sprintf(modelBaseString, docType, model, "doc")
} else {
if docType == "code" {
return fmt.Sprintf(modelBaseString, docType, model, "text")
}
return fmt.Sprintf(modelBaseString, docType, model, "query")
}
}
func (v *vectorizer) getModel002String(model string) string {
modelBaseString := "text-embedding-%s-002"
return fmt.Sprintf(modelBaseString, model)
}
|