File size: 8,419 Bytes
ac5ddf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import weaviate

from sentence_transformers import SentenceTransformer
from langchain_community.document_loaders import BSHTMLLoader
from pathlib import Path
from lxml import html
import logging
from semantic_text_splitter import HuggingFaceTextSplitter
from tokenizers import Tokenizer
import json
import os
import re
import logging

weaviate_logger = logging.getLogger("httpx")
weaviate_logger.setLevel(logging.WARNING)

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)



######################################################################
# MAINLINE
#
logger.info("#### MAINLINE ENTERED.")

#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML" 
pathString = "/app/inputDocs"
chunks = []
webpageDocNames = []
page_contentArray = []
webpageChunks = []
webpageTitles = []
webpageChunksDocNames = []


#######################################################
# Read each text input file, parse it into a document,
# chunk it, collect chunks and document name.
logger.info("#### Read and chunk input text files.")
for filename in os.listdir(pathString):
    logger.info(filename)
    path = Path(pathString + "/" + filename)
    filename = filename.rstrip(".html")
    webpageDocNames.append(filename)
    htmlLoader = BSHTMLLoader(path,"utf-8") 
    htmlData = htmlLoader.load()

    title   = htmlData[0].metadata['title']
    page_content = htmlData[0].page_content
    
    # Clean data. Remove multiple newlines, etc.
    page_content = re.sub(r'\n+', '\n',page_content)
    
    page_contentArray.append(page_content);
    webpageTitles.append(title)
    max_tokens = 1000
    tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
    logger.debug(f"### tokenizer: {tokenizer}")
    splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
    chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)

    chunks = []
    for chnk in chunksOnePage:
        logger.debug(f"#### chnk in file: {chnk}")
        chunks.append(chnk)
        logger.debug(f"chunks: {chunks}")
    webpageChunks.append(chunks)
    webpageChunksDocNames.append(filename + "Chunks")

    logger.debug(f"### filename, title: {filename}, {title}")
    
logger.debug(f"### webpageDocNames: {webpageDocNames}")


######################################################
# Connect to the Weaviate vector database.
logger.info("#### Create Weaviate db client connection.")
client = weaviate.connect_to_custom(
    http_host="127.0.0.1",
    http_port=8080,
    http_secure=False,
    grpc_host="127.0.0.1",
    grpc_port=50051,
    grpc_secure=False
    #read_timeout=600,
    #write_timeout=90
)
client.connect() 


######################################################
# Create database webpage and chunks collections.
#wpCollection = createWebpageCollection()
#wpChunkCollection = createChunksCollection()
logger.info("#### createWebpageCollection() entered.")
if client.collections.exists("Documents"):
    client.collections.delete("Documents")

class_obj = {
  "class": "Documents",
  "description": "For first attempt at loading a Weviate database.",
  "vectorizer": "text2vec-transformers",
  "moduleConfig": {
    "text2vec-transformers": {
    "vectorizeClassName": False
    }
  },
  "vectorIndexType": "hnsw",  
  "vectorIndexConfig": {
      "distance": "cosine",
  },
  "properties": [
        {
            "name": "title",
            "dataType": ["text"],
            "description": "HTML doc title.",
            "vectorizer": "text2vec-transformers",
            "moduleConfig": {
                "text2vec-transformers": {
                    "vectorizePropertyName": True,
                    "skip": False,
                    "tokenization": "lowercase"
                }
            },
            "invertedIndexConfig": {
                "bm25": {
                    "b": 0.75,
                    "k1": 1.2
                },
            }
        },
        {
            "name": "content",
            "dataType": ["text"],
            "description": "HTML page content.",
            "moduleConfig": {
                "text2vec-transformers": {
                    "vectorizePropertyName": True,
                    "tokenization": "whitespace"
                }
            }
        }
    ]  
}
wpCollection = client.collections.create_from_dict(class_obj)

logger.info("#### createChunksCollection() entered.")
if client.collections.exists("Chunks"):
    client.collections.delete("Chunks")

class_obj = {
    "class": "Chunks",
    "description": "Collection for document chunks.",
    "vectorizer": "text2vec-transformers",
    "moduleConfig": {
        "text2vec-transformers": {
            "vectorizeClassName": True
        }
    },
    "vectorIndexType": "hnsw",  
    "vectorIndexConfig": {
        "distance": "cosine",
    },
    "properties": [
        {
            "name": "chunk",
            "dataType": ["text"],
            "description": "Single webpage chunk.",
            "vectorizer": "text2vec-transformers",
            "moduleConfig": {
                "text2vec-transformers": {
                  "vectorizePropertyName": False,
                  "skip": False,
                  "tokenization": "lowercase"
                }
            }
        },
        {
            "name": "chunk_index",
            "dataType": ["int"]
        },
        {
            "name": "webpage",
            "dataType": ["Documents"],
            "description": "Webpage content chunks.",
        
            "invertedIndexConfig": {
                "bm25": {
                    "b": 0.75,
                    "k1": 1.2
                }
            }  
        }
    ]
}
wpChunkCollection = client.collections.create_from_dict(class_obj)


###########################################################
# Create document and chunks objects in the database.
logger.info("#### Create page/doc and chunk db objects.")
for i, className in enumerate(webpageDocNames):
    title = webpageTitles[i]
    logger.debug(f"## className, title: {className}, {title}")
    # Create Webpage Object
    page_content = page_contentArray[i]
    # Insert the document.
    wpCollectionObj_uuid = wpCollection.data.insert(
      {
        "name": className,
        "title": title,
        "content": page_content
      }
    )        
    
    # Insert the chunks for the document.
    for i2, chunk in enumerate(webpageChunks[i]):
        chunk_uuid = wpChunkCollection.data.insert(
          {
            "title": title,
            "chunk": chunk,
            "chunk_index": i2,
            "references":
            {
              "webpage": wpCollectionObj_uuid
            }
          }
        )

###############################################################################
# text contains prompt for vector DB.
text = "human-made computer cognitive ability"


###############################################################################
# Initial the the sentence transformer and encode the query prompt.
logger.info(f"#### Encode text query prompt to create vectors. {text}")
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')

vector = model.encode(text)
vectorList = []

logger.debug("#### Print vectors.")
for vec in vector:
    vectorList.append(vec)
logger.debug(f"vectorList: {vectorList[2]}")

# Fetch chunks and print chunks.
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
semChunks = wpChunkCollection.query.near_vector(
    near_vector=vectorList,
    distance=0.7,
    limit=3
)
logger.debug(f"### semChunks[0]: {semChunks}")

# Print chunks, corresponding document and document title.
logger.info("#### Print individual retrieved chunks.")
for chunk in enumerate(semChunks.objects):
    logger.info(f"#### chunk: {chunk}")
    webpage_uuid = chunk[1].properties['references']['webpage']
    logger.info(f"webpage_uuid: {webpage_uuid}")
    wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
    logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")

logger.info("#### Closing client db connection.")
client.close()

logger.info("#### Program terminating.")