Spaces:
Running
Running
File size: 7,518 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package classification
import (
"context"
"fmt"
"runtime"
"time"
"github.com/go-openapi/strfmt"
"github.com/pkg/errors"
"github.com/sirupsen/logrus"
"github.com/weaviate/weaviate/entities/additional"
"github.com/weaviate/weaviate/entities/models"
"github.com/weaviate/weaviate/entities/modulecapabilities"
"github.com/weaviate/weaviate/entities/schema"
"github.com/weaviate/weaviate/entities/search"
)
// the contents of this file deal with anything about a classification run
// which is generic, whereas the individual classify_item fns can be found in
// the respective files such as classifier_run_knn.go
func (c *Classifier) run(params models.Classification,
filters Filters,
) {
ctx, cancel := contextWithTimeout(30 * time.Minute)
defer cancel()
go c.monitorClassification(ctx, cancel, schema.ClassName(params.Class))
c.logBegin(params, filters)
unclassifiedItems, err := c.vectorRepo.GetUnclassified(ctx,
params.Class, params.ClassifyProperties, filters.Source())
if err != nil {
c.failRunWithError(params, errors.Wrap(err, "retrieve to-be-classifieds"))
return
}
if len(unclassifiedItems) == 0 {
c.failRunWithError(params,
fmt.Errorf("no classes to be classified - did you run a previous classification already?"))
return
}
c.logItemsFetched(params, unclassifiedItems)
classifyItem, err := c.prepareRun(params, filters, unclassifiedItems)
if err != nil {
c.failRunWithError(params, errors.Wrap(err, "prepare classification"))
return
}
params, err = c.runItems(ctx, classifyItem, params, filters, unclassifiedItems)
if err != nil {
c.failRunWithError(params, err)
return
}
c.succeedRun(params)
}
func (c *Classifier) monitorClassification(ctx context.Context, cancelFn context.CancelFunc,
className schema.ClassName,
) {
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
schema := c.schemaGetter.GetSchemaSkipAuth()
class := schema.FindClassByName(className)
if class == nil {
cancelFn()
return
}
}
}
}
func (c *Classifier) prepareRun(params models.Classification, filters Filters,
unclassifiedItems []search.Result,
) (ClassifyItemFn, error) {
c.logBeginPreparation(params)
defer c.logFinishPreparation(params)
if params.Type == "knn" {
return c.classifyItemUsingKNN, nil
}
if params.Type == "zeroshot" {
return c.classifyItemUsingZeroShot, nil
}
if c.modulesProvider != nil {
classifyItemFn, err := c.modulesProvider.GetClassificationFn(params.Class, params.Type,
c.getClassifyParams(params, filters, unclassifiedItems))
if err != nil {
return nil, errors.Wrapf(err, "cannot classify")
}
if classifyItemFn == nil {
return nil, errors.Errorf("cannot classify: empty classifier for %s", params.Type)
}
classification := &moduleClassification{classifyItemFn}
return classification.classifyFn, nil
}
return nil, errors.Errorf("unsupported type '%s', have no classify item fn for this", params.Type)
}
func (c *Classifier) getClassifyParams(params models.Classification,
filters Filters, unclassifiedItems []search.Result,
) modulecapabilities.ClassifyParams {
return modulecapabilities.ClassifyParams{
Schema: c.schemaGetter.GetSchemaSkipAuth(),
Params: params,
Filters: filters,
UnclassifiedItems: unclassifiedItems,
VectorRepo: c.vectorClassSearchRepo,
}
}
// runItems splits the job list into batches that can be worked on parallelly
// depending on the available CPUs
func (c *Classifier) runItems(ctx context.Context, classifyItem ClassifyItemFn, params models.Classification, filters Filters,
items []search.Result,
) (models.Classification, error) {
workerCount := runtime.GOMAXPROCS(0)
if len(items) < workerCount {
workerCount = len(items)
}
workers := newRunWorkers(workerCount, classifyItem, params, filters, c.vectorRepo)
workers.addJobs(items)
res := workers.work(ctx)
params.Meta.Completed = strfmt.DateTime(time.Now())
params.Meta.CountSucceeded = res.successCount
params.Meta.CountFailed = res.errorCount
params.Meta.Count = res.successCount + res.errorCount
return params, res.err
}
func (c *Classifier) succeedRun(params models.Classification) {
params.Status = models.ClassificationStatusCompleted
ctx, cancel := contextWithTimeout(2 * time.Second)
defer cancel()
err := c.repo.Put(ctx, params)
if err != nil {
c.logExecutionError("store succeeded run", err, params)
}
c.logFinish(params)
}
func (c *Classifier) failRunWithError(params models.Classification, err error) {
params.Status = models.ClassificationStatusFailed
params.Error = fmt.Sprintf("classification failed: %v", err)
err = c.repo.Put(context.Background(), params)
if err != nil {
c.logExecutionError("store failed run", err, params)
}
c.logFinish(params)
}
func (c *Classifier) extendItemWithObjectMeta(item *search.Result,
params models.Classification, classified []string,
) {
// don't overwrite existing non-classification meta info
if item.AdditionalProperties == nil {
item.AdditionalProperties = models.AdditionalProperties{}
}
item.AdditionalProperties["classification"] = additional.Classification{
ID: params.ID,
Scope: params.ClassifyProperties,
ClassifiedFields: classified,
Completed: strfmt.DateTime(time.Now()),
}
}
func contextWithTimeout(d time.Duration) (context.Context, context.CancelFunc) {
return context.WithTimeout(context.Background(), d)
}
// Logging helper methods
func (c *Classifier) logBase(params models.Classification, event string) *logrus.Entry {
return c.logger.WithField("action", "classification_run").
WithField("event", event).
WithField("params", params).
WithField("classification_type", params.Type)
}
func (c *Classifier) logBegin(params models.Classification, filters Filters) {
c.logBase(params, "classification_begin").
WithField("filters", filters).
Debug("classification started")
}
func (c *Classifier) logFinish(params models.Classification) {
c.logBase(params, "classification_finish").
WithField("status", params.Status).
Debug("classification finished")
}
func (c *Classifier) logItemsFetched(params models.Classification, items search.Results) {
c.logBase(params, "classification_items_fetched").
WithField("status", params.Status).
WithField("item_count", len(items)).
Debug("fetched source items")
}
func (c *Classifier) logBeginPreparation(params models.Classification) {
c.logBase(params, "classification_preparation_begin").
Debug("begin run preparation")
}
func (c *Classifier) logFinishPreparation(params models.Classification) {
c.logBase(params, "classification_preparation_finish").
Debug("finish run preparation")
}
func (c *Classifier) logExecutionError(event string, err error, params models.Classification) {
c.logBase(params, event).
WithError(err).
Error("classification execution failure")
}
|