File size: 6,394 Bytes
b110593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//                           _       _
// __      _____  __ ___   ___  __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
//  \ V  V /  __/ (_| |\ V /| | (_| | ||  __/
//   \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
//  Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
//  CONTACT: [email protected]
//

package classification

import (
	"fmt"

	"github.com/go-openapi/strfmt"
	"github.com/weaviate/weaviate/entities/models"
	"github.com/weaviate/weaviate/entities/schema"
	"github.com/weaviate/weaviate/entities/search"
)

func testSchema() schema.Schema {
	return schema.Schema{
		Objects: &models.Schema{
			Classes: []*models.Class{
				{
					Class: "ExactCategory",
				},
				{
					Class: "MainCategory",
				},
				{
					Class: "Article",
					Properties: []*models.Property{
						{
							Name:     "description",
							DataType: []string{string(schema.DataTypeText)},
						},
						{
							Name:         "name",
							DataType:     schema.DataTypeText.PropString(),
							Tokenization: models.PropertyTokenizationWhitespace,
						},
						{
							Name:     "exactCategory",
							DataType: []string{"ExactCategory"},
						},
						{
							Name:     "mainCategory",
							DataType: []string{"MainCategory"},
						},
						{
							Name:     "categories",
							DataType: []string{"ExactCategory"},
						},
						{
							Name:     "anyCategory",
							DataType: []string{"MainCategory", "ExactCategory"},
						},
						{
							Name:     "words",
							DataType: schema.DataTypeInt.PropString(),
						},
					},
				},
			},
		},
	}
}

// vector position close to [1,0,0] means -> politics, [0,1,0] means -> society, [0, 0, 1] -> food&drink
func testDataToBeClassified() search.Results {
	return search.Results{
		search.Result{
			ID:        "75ba35af-6a08-40ae-b442-3bec69b355f9",
			ClassName: "Article",
			Vector:    []float32{0.78, 0, 0},
			Schema: map[string]interface{}{
				"description": "Barack Obama is a former US president",
			},
		},
		search.Result{
			ID:        "f850439a-d3cd-4f17-8fbf-5a64405645cd",
			ClassName: "Article",
			Vector:    []float32{0.90, 0, 0},
			Schema: map[string]interface{}{
				"description": "Michelle Obama is Barack Obamas wife",
			},
		},
		search.Result{
			ID:        "a2bbcbdc-76e1-477d-9e72-a6d2cfb50109",
			ClassName: "Article",
			Vector:    []float32{0, 0.78, 0},
			Schema: map[string]interface{}{
				"description": "Johnny Depp is an actor",
			},
		},
		search.Result{
			ID:        "069410c3-4b9e-4f68-8034-32a066cb7997",
			ClassName: "Article",
			Vector:    []float32{0, 0.90, 0},
			Schema: map[string]interface{}{
				"description": "Brad Pitt starred in a Quentin Tarantino movie",
			},
		},
		search.Result{
			ID:        "06a1e824-889c-4649-97f9-1ed3fa401d8e",
			ClassName: "Article",
			Vector:    []float32{0, 0, 0.78},
			Schema: map[string]interface{}{
				"description": "Ice Cream often contains a lot of sugar",
			},
		},
		search.Result{
			ID:        "6402e649-b1e0-40ea-b192-a64eab0d5e56",
			ClassName: "Article",
			Vector:    []float32{0, 0, 0.90},
			Schema: map[string]interface{}{
				"description": "French Fries are more common in Belgium and the US than in France",
			},
		},
	}
}

const (
	idMainCategoryPoliticsAndSociety = "39c6abe3-4bbe-4c4e-9e60-ca5e99ec6b4e"
	idMainCategoryFoodAndDrink       = "5a3d909a-4f0d-4168-8f5c-cd3074d1e79a"
	idCategoryPolitics               = "1b204f16-7da6-44fd-bbd2-8cc4a7414bc3"
	idCategorySociety                = "ec500f39-1dc9-4580-9bd1-55a8ea8e37a2"
	idCategoryFoodAndDrink           = "027b708a-31ca-43ea-9001-88bec864c79c"
)

// only used for contextual type classification
func testDataPossibleTargets() search.Results {
	return search.Results{
		search.Result{
			ID:        idMainCategoryPoliticsAndSociety,
			ClassName: "MainCategory",
			Vector:    []float32{1.01, 1.01, 0},
			Schema: map[string]interface{}{
				"name": "Politics and Society",
			},
		},
		search.Result{
			ID:        idMainCategoryFoodAndDrink,
			ClassName: "MainCategory",
			Vector:    []float32{0, 0, 0.99},
			Schema: map[string]interface{}{
				"name": "Food and Drinks",
			},
		},
		search.Result{
			ID:        idCategoryPolitics,
			ClassName: "ExactCategory",
			Vector:    []float32{0.99, 0, 0},
			Schema: map[string]interface{}{
				"name": "Politics",
			},
		},
		search.Result{
			ID:        idCategorySociety,
			ClassName: "ExactCategory",
			Vector:    []float32{0, 0.90, 0},
			Schema: map[string]interface{}{
				"name": "Society",
			},
		},
		search.Result{
			ID:        idCategoryFoodAndDrink,
			ClassName: "ExactCategory",
			Vector:    []float32{0, 0, 0.99},
			Schema: map[string]interface{}{
				"name": "Food and Drink",
			},
		},
	}
}

func beaconRef(target string) *models.SingleRef {
	beacon := fmt.Sprintf("weaviate://localhost/%s", target)
	return &models.SingleRef{Beacon: strfmt.URI(beacon)}
}

// only used for knn-type
func testDataAlreadyClassified() search.Results {
	return search.Results{
		search.Result{
			ID:        "8aeecd06-55a0-462c-9853-81b31a284d80",
			ClassName: "Article",
			Vector:    []float32{1, 0, 0},
			Schema: map[string]interface{}{
				"description":   "This article talks about politics",
				"exactCategory": models.MultipleRef{beaconRef(idCategoryPolitics)},
				"mainCategory":  models.MultipleRef{beaconRef(idMainCategoryPoliticsAndSociety)},
			},
		},
		search.Result{
			ID:        "9f4c1847-2567-4de7-8861-34cf47a071ae",
			ClassName: "Article",
			Vector:    []float32{0, 1, 0},
			Schema: map[string]interface{}{
				"description":   "This articles talks about society",
				"exactCategory": models.MultipleRef{beaconRef(idCategorySociety)},
				"mainCategory":  models.MultipleRef{beaconRef(idMainCategoryPoliticsAndSociety)},
			},
		},
		search.Result{
			ID:        "926416ec-8fb1-4e40-ab8c-37b226b3d68e",
			ClassName: "Article",
			Vector:    []float32{0, 0, 1},
			Schema: map[string]interface{}{
				"description":   "This article talks about food",
				"exactCategory": models.MultipleRef{beaconRef(idCategoryFoodAndDrink)},
				"mainCategory":  models.MultipleRef{beaconRef(idMainCategoryFoodAndDrink)},
			},
		},
	}
}