Spaces:
Running
Running
File size: 9,539 Bytes
b110593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
// _ _
// __ _____ __ ___ ___ __ _| |_ ___
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \
// \ V V / __/ (_| |\ V /| | (_| | || __/
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___|
//
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved.
//
// CONTACT: [email protected]
//
package clients
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"strings"
"time"
"github.com/weaviate/weaviate/usecases/modulecomponents"
"github.com/pkg/errors"
"github.com/sirupsen/logrus"
"github.com/weaviate/weaviate/modules/text2vec-palm/ent"
)
type taskType string
var (
// Specifies the given text is a document in a search/retrieval setting
retrievalQuery taskType = "RETRIEVAL_QUERY"
// Specifies the given text is a query in a search/retrieval setting
retrievalDocument taskType = "RETRIEVAL_DOCUMENT"
)
func buildURL(useGenerativeAI bool, apiEndoint, projectID, modelID string) string {
if useGenerativeAI {
// Generative AI supports only 1 embedding model: embedding-gecko-001. So for now
// in order to keep it simple we generate one variation of PaLM API url.
// For more context check out this link:
// https://developers.generativeai.google/models/language#model_variations
return "https://generativelanguage.googleapis.com/v1beta3/models/embedding-gecko-001:batchEmbedText"
}
urlTemplate := "https://%s/v1/projects/%s/locations/us-central1/publishers/google/models/%s:predict"
return fmt.Sprintf(urlTemplate, apiEndoint, projectID, modelID)
}
type palm struct {
apiKey string
httpClient *http.Client
urlBuilderFn func(useGenerativeAI bool, apiEndoint, projectID, modelID string) string
logger logrus.FieldLogger
}
func New(apiKey string, timeout time.Duration, logger logrus.FieldLogger) *palm {
return &palm{
apiKey: apiKey,
httpClient: &http.Client{
Timeout: timeout,
},
urlBuilderFn: buildURL,
logger: logger,
}
}
func (v *palm) Vectorize(ctx context.Context, input []string,
config ent.VectorizationConfig, titlePropertyValue string,
) (*ent.VectorizationResult, error) {
return v.vectorize(ctx, input, retrievalDocument, titlePropertyValue, config)
}
func (v *palm) VectorizeQuery(ctx context.Context, input []string,
config ent.VectorizationConfig,
) (*ent.VectorizationResult, error) {
return v.vectorize(ctx, input, retrievalQuery, "", config)
}
func (v *palm) vectorize(ctx context.Context, input []string, taskType taskType,
titlePropertyValue string, config ent.VectorizationConfig,
) (*ent.VectorizationResult, error) {
useGenerativeAIEndpoint := v.useGenerativeAIEndpoint(config)
payload := v.getPayload(useGenerativeAIEndpoint, input, taskType, titlePropertyValue, config)
body, err := json.Marshal(payload)
if err != nil {
return nil, errors.Wrapf(err, "marshal body")
}
endpointURL := v.urlBuilderFn(useGenerativeAIEndpoint,
v.getApiEndpoint(config), v.getProjectID(config), v.getModel(config))
req, err := http.NewRequestWithContext(ctx, "POST", endpointURL,
bytes.NewReader(body))
if err != nil {
return nil, errors.Wrap(err, "create POST request")
}
apiKey, err := v.getApiKey(ctx)
if err != nil {
return nil, errors.Wrapf(err, "Palm API Key")
}
req.Header.Add("Content-Type", "application/json")
if useGenerativeAIEndpoint {
req.Header.Add("x-goog-api-key", apiKey)
} else {
req.Header.Add("Authorization", fmt.Sprintf("Bearer %s", apiKey))
}
res, err := v.httpClient.Do(req)
if err != nil {
return nil, errors.Wrap(err, "send POST request")
}
defer res.Body.Close()
bodyBytes, err := io.ReadAll(res.Body)
if err != nil {
return nil, errors.Wrap(err, "read response body")
}
if useGenerativeAIEndpoint {
return v.parseGenerativeAIApiResponse(res.StatusCode, bodyBytes, input)
}
return v.parseEmbeddingsResponse(res.StatusCode, bodyBytes, input)
}
func (v *palm) useGenerativeAIEndpoint(config ent.VectorizationConfig) bool {
return v.getApiEndpoint(config) == "generativelanguage.googleapis.com"
}
func (v *palm) getPayload(useGenerativeAI bool, input []string,
taskType taskType, title string, config ent.VectorizationConfig,
) interface{} {
if useGenerativeAI {
return batchEmbedTextRequest{Texts: input}
}
isModelVersion001 := strings.HasSuffix(config.Model, "@001")
instances := make([]instance, len(input))
for i := range input {
if isModelVersion001 {
instances[i] = instance{Content: input[i]}
} else {
instances[i] = instance{Content: input[i], TaskType: taskType, Title: title}
}
}
return embeddingsRequest{instances}
}
func (v *palm) checkResponse(statusCode int, palmApiError *palmApiError) error {
if statusCode != 200 || palmApiError != nil {
if palmApiError != nil {
return fmt.Errorf("connection to Google PaLM failed with status: %v error: %v",
statusCode, palmApiError.Message)
}
return fmt.Errorf("connection to Google PaLM failed with status: %d", statusCode)
}
return nil
}
func (v *palm) getApiKey(ctx context.Context) (string, error) {
if apiKeyValue := v.getValueFromContext(ctx, "X-Palm-Api-Key"); apiKeyValue != "" {
return apiKeyValue, nil
}
if len(v.apiKey) > 0 {
return v.apiKey, nil
}
return "", errors.New("no api key found " +
"neither in request header: X-Palm-Api-Key " +
"nor in environment variable under PALM_APIKEY")
}
func (v *palm) getValueFromContext(ctx context.Context, key string) string {
if value := ctx.Value(key); value != nil {
if keyHeader, ok := value.([]string); ok && len(keyHeader) > 0 && len(keyHeader[0]) > 0 {
return keyHeader[0]
}
}
// try getting header from GRPC if not successful
if apiKey := modulecomponents.GetValueFromGRPC(ctx, key); len(apiKey) > 0 && len(apiKey[0]) > 0 {
return apiKey[0]
}
return ""
}
func (v *palm) parseGenerativeAIApiResponse(statusCode int,
bodyBytes []byte, input []string,
) (*ent.VectorizationResult, error) {
var resBody batchEmbedTextResponse
if err := json.Unmarshal(bodyBytes, &resBody); err != nil {
return nil, errors.Wrap(err, "unmarshal response body")
}
if err := v.checkResponse(statusCode, resBody.Error); err != nil {
return nil, err
}
if len(resBody.Embeddings) == 0 {
return nil, errors.Errorf("empty embeddings response")
}
vectors := make([][]float32, len(resBody.Embeddings))
for i := range resBody.Embeddings {
vectors[i] = resBody.Embeddings[i].Value
}
dimensions := len(resBody.Embeddings[0].Value)
return v.getResponse(input, dimensions, vectors)
}
func (v *palm) parseEmbeddingsResponse(statusCode int,
bodyBytes []byte, input []string,
) (*ent.VectorizationResult, error) {
var resBody embeddingsResponse
if err := json.Unmarshal(bodyBytes, &resBody); err != nil {
return nil, errors.Wrap(err, "unmarshal response body")
}
if err := v.checkResponse(statusCode, resBody.Error); err != nil {
return nil, err
}
if len(resBody.Predictions) == 0 {
return nil, errors.Errorf("empty embeddings response")
}
vectors := make([][]float32, len(resBody.Predictions))
for i := range resBody.Predictions {
vectors[i] = resBody.Predictions[i].Embeddings.Values
}
dimensions := len(resBody.Predictions[0].Embeddings.Values)
return v.getResponse(input, dimensions, vectors)
}
func (v *palm) getResponse(input []string, dimensions int, vectors [][]float32) (*ent.VectorizationResult, error) {
return &ent.VectorizationResult{
Texts: input,
Dimensions: dimensions,
Vectors: vectors,
}, nil
}
func (v *palm) getApiEndpoint(config ent.VectorizationConfig) string {
return config.ApiEndpoint
}
func (v *palm) getProjectID(config ent.VectorizationConfig) string {
return config.ProjectID
}
func (v *palm) getModel(config ent.VectorizationConfig) string {
return config.Model
}
type embeddingsRequest struct {
Instances []instance `json:"instances,omitempty"`
}
type instance struct {
Content string `json:"content"`
TaskType taskType `json:"task_type,omitempty"`
Title string `json:"title,omitempty"`
}
type embeddingsResponse struct {
Predictions []prediction `json:"predictions,omitempty"`
Error *palmApiError `json:"error,omitempty"`
DeployedModelId string `json:"deployedModelId,omitempty"`
Model string `json:"model,omitempty"`
ModelDisplayName string `json:"modelDisplayName,omitempty"`
ModelVersionId string `json:"modelVersionId,omitempty"`
}
type prediction struct {
Embeddings embeddings `json:"embeddings,omitempty"`
SafetyAttributes *safetyAttributes `json:"safetyAttributes,omitempty"`
}
type embeddings struct {
Values []float32 `json:"values,omitempty"`
}
type safetyAttributes struct {
Scores []float64 `json:"scores,omitempty"`
Blocked *bool `json:"blocked,omitempty"`
Categories []string `json:"categories,omitempty"`
}
type palmApiError struct {
Code int `json:"code"`
Message string `json:"message"`
Status string `json:"status"`
}
type batchEmbedTextRequest struct {
Texts []string `json:"texts,omitempty"`
}
type batchEmbedTextResponse struct {
Embeddings []embedding `json:"embeddings,omitempty"`
Error *palmApiError `json:"error,omitempty"`
}
type embedding struct {
Value []float32 `json:"value,omitempty"`
}
|