File size: 8,865 Bytes
e74b870
3634d38
 
76035d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad63f50
 
 
 
 
 
 
 
 
 
 
 
2bf3a71
 
707615c
2bf3a71
 
 
 
76035d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import weaviate
#import weaviate.classes as wvc
#from weaviate.embedded import EmbeddedOptions
from sentence_transformers import SentenceTransformer
from langchain_community.document_loaders import BSHTMLLoader
from pathlib import Path
from lxml import html
import logging
from semantic_text_splitter import HuggingFaceTextSplitter
from tokenizers import Tokenizer
import json
import os
import re

def createChunksCollection():
    print("#### createChunksCollection() entered.")
    if client.collections.exists("Chunks"):
        client.collections.delete("Chunks")

    class_obj = {
        "class": "Chunks",
        "description": "Collection for document chunks.",
        "vectorizer": "text2vec-transformers",
        "moduleConfig": {
            "text2vec-transformers": {
                "vectorizeClassName": True
            }
        },
        "vectorIndexType": "hnsw",  
        "vectorIndexConfig": {
            "distance": "cosine",
        },
        "properties": [
            {
                "name": "chunk",
                "dataType": ["text"],
                "description": "Single webpage chunk.",
                "vectorizer": "text2vec-transformers",
                "moduleConfig": {
                    "text2vec-transformers": {
                      "vectorizePropertyName": False,
                      "skip": False,
                      "tokenization": "lowercase"
                    }
                }
            },
            {
                "name": "chunk_index",
                "dataType": ["int"]
            },
            {
                "name": "webpage",
                "dataType": ["Documents"],
                "description": "Webpage content chunks.",
            
                "invertedIndexConfig": {
                    "bm25": {
                        "b": 0.75,
                        "k1": 1.2
                    }
                }  
            }
        ]
    }

    return(client.collections.create_from_dict(class_obj))

def createWebpageCollection():
    print("#### createWebpageCollection() entered.")
    if client.collections.exists("Documents"):
        client.collections.delete("Documents")

    class_obj = {
      "class": "Documents",
      "description": "For first attempt at loading a Weviate database.",
      "vectorizer": "text2vec-transformers",
      "moduleConfig": {
        "text2vec-transformers": {
        "vectorizeClassName": False
        }
      },
      "vectorIndexType": "hnsw",  
      "vectorIndexConfig": {
          "distance": "cosine",
      },
      "properties": [
            #{
            #    "docname": "fdsa",
            #    "dataType": ["text"],
            #    "description": "Name of document"
            #},
            {
                "name": "title",
                "dataType": ["text"],
                "description": "HTML doc title.",
                "vectorizer": "text2vec-transformers",
                "moduleConfig": {
                    "text2vec-transformers": {
                        "vectorizePropertyName": True,
                        "skip": False,
                        "tokenization": "lowercase"
                    }
                },
                "invertedIndexConfig": {
                    "bm25": {
                        "b": 0.75,
                        "k1": 1.2
                    },
                }
            },
            {
                "name": "content",
                "dataType": ["text"],
                "description": "HTML page content.",
                "moduleConfig": {
                    "text2vec-transformers": {
                        "vectorizePropertyName": True,
                        "tokenization": "whitespace"
                    }
                }
            }
        ]  
    }
      
    return(client.collections.create_from_dict(class_obj))


#
# MAINLINE
#
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML" 
pathString = "inputDocs"
chunks = []
webpageDocNames = []
#webpageChunksClassesNames = []
page_contentArray = []
webpageChunks = []
webpageTitles = []
webpageChunksDocNames = []

#client = weaviate.WeaviateClient(
#    embedded_options=EmbeddedOptions(
#        additional_env_vars={
#            "ENABLE_MODULES": "backup-filesystem,text2vec-transformers",
#            "BACKUP_FILESYSTEM_PATH": "/tmp/backups",
#            "PERSISTENCE_DATA_PATH": "/var/lib/weaviate",
#            "DEFAULT_VECTORIZER_MODULE": "text2vec-transformers"
#            #"TRANSFORMERS_INFERENCE_API": "http://huggingface.co/spaces/MVPilgrim/WeaviateDB:8080"
#            
#        }
#    )
#)

#client = weaviate.connect_to_custom(
#    #http_host="http://huggingface.co/spaces/MVPilgrim/WeaviateDB",
#    http_host="http://weaviate",
#    http_port=8080,
#    http_secure=False,
#    #grpc_host="huggingface.co",
#    grpc_host="127.0.0.1",
#    grpc_port=50051,
#    grpc_secure=False
#    #auth_credentials=AuthApiKey(weaviate_key),   # `weaviate_key`: your Weaviate API key
#)

client = weaviate.Client(
    url="http://localhost:8080"
)

#client = weaviate.connect_to_local(
#    #cluster_url="http://localhost:8080"
#)
print("#### client: ",client)

client.connect() 

for filename in os.listdir(pathString):
    print(filename)
    path = Path(pathString + "/" + filename)
    filename = filename.rstrip(".html")
    webpageDocNames.append(filename)
    htmlLoader = BSHTMLLoader(path,"utf-8") 
    htmlData = htmlLoader.load()

    title   = htmlData[0].metadata['title']
    page_content = htmlData[0].page_content
    
    #  Clean data. Remove multiple newlines, etc.
    page_content = re.sub(r'\n+', '\n',page_content)
    
    page_contentArray.append(page_content);
    webpageTitles.append(title)
    #htmlDocument = htmlData[0]
    max_tokens = 1000
    tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
    splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
    chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)

    chunks = []
    for chnk in chunksOnePage:
        #print("\n\n#### chnk: ",chnk)
        chunks.append(chnk)
        #print("chunks: ",chunks)
    webpageChunks.append(chunks)
    webpageChunksDocNames.append(filename + "Chunks")

    print("### filename, title: ",filename,",",title)
print("### webpageDocNames: ",webpageDocNames)

wpCollection = createWebpageCollection()
wpChunkCollection = createChunksCollection()

for i, className in enumerate(webpageDocNames):
    title = webpageTitles[i]
    print("## className, title: ",className,",",title)
    # Create Webpage Object
    page_content = page_contentArray[i]
    #print("\n#### page_content: ",page_content)
    
    wpCollectionObj_uuid = wpCollection.data.insert(
      {
        "name": className,
        "title": title,
        "content": page_content
      }
    )        
    
    for i2, chunk in enumerate(webpageChunks[i]):
        #print("#### chunk: ",chunk)
        chunk_uuid = wpChunkCollection.data.insert(
          {
            "title": title,
            "chunk": chunk,
            "chunk_index": i2,
            "references":
            {
              "webpage": wpCollectionObj_uuid
            }
          }
        )
        #print("### chunk_index,chunk: ",i2,",",chunk[0:20])

#text = "List the main capabilities of artificial intelligence."
#text = "List three of the greatest Norwegian authors."
#text = "turkey burgers golden fried with lots of mayonaise"
text = "human-made computer cognitive ability"
#text = "literature authors"
#text = "artifical intelligence"


model = SentenceTransformer('../multi-qa-MiniLM-L6-cos-v1')
vector = model.encode(text)
#print("#### vector: ",vector[0])
vectorList = []

for vec in vector:
    vectorList.append(vec)
print("vectorList: ",vectorList[2])

semChunks = wpChunkCollection.query.near_vector(
    near_vector=vectorList,
    distance=0.7,
    limit=3
)
print("### semChunks[0]: ",semChunks)
#print("### semChunks.objects[0]: ",semChunks.objects[0])

for chunk in enumerate(semChunks.objects):
    print("\n\n#### chunk: ",chunk)
    #webpage_uuid = chunk.properties['references']['webpage']
    #webpage_uuid = chunk.references.webpage
    webpage_uuid = chunk[1].properties['references']['webpage']
    print("\nwebpage_uuid: ",webpage_uuid)
    wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
    print("\n\n### wpFromChunk title: ",wpFromChunk.properties['title'])


#print("response: ",response)

if False:
    client = weaviate.connect_to_local(
        #cluster_url="http://localhost:8080"
    )
    
    for item in wpCollection.iterator():
        print(print("\n## webpage collection: ",item.uuid, item.properties))
    
    for item in wpChunkCollection.iterator():
        print(print("\n## chunk collection: ",item.uuid, item.properties))
    
    client.close()