File size: 26,450 Bytes
720552c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import weaviate
from weaviate.connect import ConnectionParams
from weaviate.classes.init import AdditionalConfig, Timeout

from sentence_transformers import SentenceTransformer
from langchain_community.document_loaders import BSHTMLLoader
from pathlib import Path
from lxml import html
import logging
from semantic_text_splitter import HuggingFaceTextSplitter
from tokenizers import Tokenizer
import json
import os
import re

import llama_cpp
from llama_cpp import Llama

import streamlit as st
import subprocess
import time
import pprint
import io



try:
    #############################################
    # Logging setup including weaviate logging. #
    #############################################
    if 'logging' not in st.session_state:
        weaviate_logger = logging.getLogger("httpx")
        weaviate_logger.setLevel(logging.WARNING)
        logger = logging.getLogger(__name__)
        logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s',level=logging.INFO)
        st.session_state.weaviate_logger = weaviate_logger
        st.session_state.logger = logger
    else:
        weaviate_logger = st.session_state.weaviate_logger
        logger = st.session_state.logger

    
    logger.info("###################### Program Entry ############################")
    
    ##########################################################################
    # Asynchonously run startup.sh which run text2vec-transformers           #
    # asynchronously and the Weaviate Vector Database server asynchronously. #
    ##########################################################################
    def runStartup():
        logger.info("### Running startup.sh")
        try:
            subprocess.Popen(["/app/startup.sh"])
            # Wait for text2vec-transformers and Weaviate DB to initialize.
            time.sleep(180)
            #subprocess.run(["/app/cmd.sh 'ps -ef'"])
        except Exception as e:
            emsg = str(e)
            logger.error(f"### subprocess.run  EXCEPTION. e: {emsg}")
        logger.info("### Running startup.sh complete")
    if 'runStartup' not in st.session_state:
        st.session_state.runStartup = False
        if 'runStartup' not in st.session_state:
            logger.info("### runStartup still not in st.session_state after setting variable.")
        with st.spinner('Initializing Weaviate DB and text2vec-transformer...'):
            runStartup()
        try:
            logger.info("### Displaying /app/startup.log")
            with open("/app/startup.log", "r") as file:
               line = file.readline().rstrip()
               while line:
                   logger.info(line)
                   line = file.readline().rstrip()
        except Exception as e2:
            emsg = str(e2)
            logger.error(f"#### Displaying startup.log EXCEPTION. e2: {emsg}")


    #########################################
    # Function to load the CSS syling file. #
    #########################################
    def load_css(file_name):
        logger.info("#### load_css entered.")
        with open(file_name) as f:
            st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
        logger.info("#### load_css exited.")
    if 'load_css' not in st.session_state:
        load_css(".streamlit/main.css")
        st.session_state.load_css = True

    # Display UI heading.
    st.markdown("<h1 style='text-align: center; color: #666666;'>LLM with RAG Prompting <br style='page-break-after: always;'>Proof of Concept</h1>",
                unsafe_allow_html=True)
   
    pathString = "/app/inputDocs"
    chunks = []
    webpageDocNames = []
    page_contentArray = []
    webpageChunks = []
    webpageTitles = []
    webpageChunksDocNames = []


    ############################################
    # Connect to the Weaviate vector database. #
    ############################################
    if 'client' not in st.session_state:
        logger.info("#### Create Weaviate db client connection.")
        client = weaviate.WeaviateClient(
            connection_params=ConnectionParams.from_params(
                http_host="localhost",
                http_port="8080",
                http_secure=False,
                grpc_host="localhost",
                grpc_port="50051",
                grpc_secure=False
            ),
            additional_config=AdditionalConfig(
                timeout=Timeout(init=60, query=1800, insert=1800),  # Values in seconds
            )
        )
        for i in range(3):
            try:
                client.connect()
                st.session_state.client = client
                logger.info("#### Create Weaviate db client connection exited.")
                break
            except Exception as e:
                emsg = str(e)
                logger.error(f"### client.connect() EXCEPTION. e2: {emsg}")
                time.sleep(45)
        if i >= 3:
            raise Exception("client.connect retries exhausted.")
    else:
        client = st.session_state.client


    ########################################################
    # Read each text input file, parse it into a document, #
    # chunk it, collect chunks and document names.         #
    ########################################################
    if not client.collections.exists("Documents") or not client.collections.exists("Chunks") :
        logger.info("#### Read and chunk input RAG document files.")
        for filename in os.listdir(pathString):
            logger.debug(filename)
            path = Path(pathString + "/" + filename)
            filename = filename.rstrip(".html")
            webpageDocNames.append(filename)
            htmlLoader = BSHTMLLoader(path,"utf-8")
            htmlData = htmlLoader.load()

            title   = htmlData[0].metadata['title']
            page_content = htmlData[0].page_content
            
            # Clean data. Remove multiple newlines, etc.
            page_content = re.sub(r'\n+', '\n',page_content)

            page_contentArray.append(page_content)
            webpageTitles.append(title)
            max_tokens = 1000
            tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
            logger.info(f"### tokenizer: {tokenizer}")
            splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
            chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)

            chunks = []
            for chnk in chunksOnePage:
                logger.debug(f"#### chnk in file: {chnk}")
                chunks.append(chnk)
                logger.debug(f"chunks: {chunks}")
            webpageChunks.append(chunks)
            webpageChunksDocNames.append(filename + "Chunks")

            logger.info(f"### filename, title: {filename}, {title}")
            logger.info(f"### webpageDocNames: {webpageDocNames}")
        logger.info("#### Read and chunk input RAG document files.")


    #############################################################
    # Create database documents and chunks schemas/collections. #
    # Each chunk schema points to its corresponding document.   #
    #############################################################
    if not client.collections.exists("Documents"):
        logger.info("#### Create documents schema/collection started.")
        class_obj = {
          "class": "Documents",
          "description": "For first attempt at loading a Weviate database.",
          "vectorizer": "text2vec-transformers",
          "moduleConfig": {
            "text2vec-transformers": {
            "vectorizeClassName": False
            }
          },
          "vectorIndexType": "hnsw",  
          "vectorIndexConfig": {
              "distance": "cosine",
          },
          "properties": [
                {
                    "name": "title",
                    "dataType": ["text"],
                    "description": "HTML doc title.",
                    "vectorizer": "text2vec-transformers",
                    "moduleConfig": {
                        "text2vec-transformers": {
                            "vectorizePropertyName": True,
                            "skip": False,
                            "tokenization": "lowercase"
                        }
                    },
                    "invertedIndexConfig": {
                        "bm25": {
                            "b": 0.75,
                            "k1": 1.2
                        },
                    }
                },
                {
                    "name": "content",
                    "dataType": ["text"],
                    "description": "HTML page content.",
                    "moduleConfig": {
                        "text2vec-transformers": {
                            "vectorizePropertyName": True,
                            "tokenization": "whitespace"
                        }
                    }
                }
            ]  
        }
        wpCollection = client.collections.create_from_dict(class_obj)
        st.session_state.wpCollection = wpCollection
        logger.info("#### Create documents schema/collection ended.")
    else:
        wpCollection = client.collections.get("Documents")
        st.session_state.wpCollection = wpCollection

    # Create chunks in db.
    if not client.collections.exists("Chunks"):
        logger.info("#### create document chunks schema/collection started.")
        #client.collections.delete("Chunks")
        class_obj = {
            "class": "Chunks",
            "description": "Collection for document chunks.",
            "vectorizer": "text2vec-transformers",
            "moduleConfig": {
                "text2vec-transformers": {
                    "vectorizeClassName": True
                }
            },
            "vectorIndexType": "hnsw",  
            "vectorIndexConfig": {
                "distance": "cosine"
            },
            "properties": [
                {
                    "name": "chunk",
                    "dataType": ["text"],
                    "description": "Single webpage chunk.",
                    "vectorizer": "text2vec-transformers",
                    "moduleConfig": {
                        "text2vec-transformers": {
                          "vectorizePropertyName": False,
                          "skip": False,
                          "tokenization": "lowercase"
                        }
                    }
                },
                {
                    "name": "chunk_index",
                    "dataType": ["int"]
                },
                {
                    "name": "webpage",
                    "dataType": ["Documents"],
                    "description": "Webpage content chunks.",
                
                    "invertedIndexConfig": {
                        "bm25": {
                            "b": 0.75,
                            "k1": 1.2
                        }
                    }  
                }
            ]
        }
        wpChunksCollection = client.collections.create_from_dict(class_obj)
        st.session_state.wpChunksCollection = wpChunksCollection
        logger.info("#### create document chunks schedma/collection ended.")
    else:
        wpChunksCollection = client.collections.get("Chunks")
        st.session_state.wpChunksCollection = wpChunksCollection        


    ##################################################################
    # Create the actual document and chunks objects in the database. #
    ##################################################################
    if 'dbObjsCreated' not in st.session_state:
        logger.info("#### Create db document and chunk objects started.")
        st.session_state.dbObjsCreated = True
        for i, className in enumerate(webpageDocNames):
            logger.info("#### Creating document object.")
            title = webpageTitles[i]
            logger.debug(f"## className, title: {className}, {title}")
            # Create Webpage Object
            page_content = page_contentArray[i]
            # Insert the document.
            wpCollectionObj_uuid = wpCollection.data.insert(
              {
                "name": className,
                "title": title,
                "content": page_content
              }
            )
            logger.info("#### Document object created.")
            
            logger.info("#### Create chunk db objects.")
            st.session_state.wpChunksCollection = wpChunksCollection
            # Insert the chunks for the document.
            for i2, chunk in enumerate(webpageChunks[i]):
                chunk_uuid = wpChunksCollection.data.insert(
                  {
                    "title": title,
                    "chunk": chunk,
                    "chunk_index": i2,
                    "references":
                    {
                      "webpage": wpCollectionObj_uuid
                    }
                  }
                )
            logger.info("#### Create chunk db objects created.")
        logger.info("#### Create db document and chunk objects ended.")


    #######################
    # Initialize the LLM. #
    #######################
    model_path = "/app/llama-2-7b-chat.Q4_0.gguf"
    if 'llm' not in st.session_state:
        logger.info("### Initializing LLM.")
        llm = Llama(model_path,
                    #*,
                    n_gpu_layers=0,
                    split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,
                    main_gpu=0,
                    tensor_split=None,
                    vocab_only=False,
                    use_mmap=True,
                    use_mlock=False,
                    kv_overrides=None,
                    seed=llama_cpp.LLAMA_DEFAULT_SEED,
                    n_ctx=2048,
                    n_batch=512,
                    n_threads=8,
                    n_threads_batch=16,
                    rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
                    pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
                    rope_freq_base=0.0,
                    rope_freq_scale=0.0,
                    yarn_ext_factor=-1.0,
                    yarn_attn_factor=1.0,
                    yarn_beta_fast=32.0,
                    yarn_beta_slow=1.0,
                    yarn_orig_ctx=0,
                    logits_all=False,
                    embedding=False,
                    offload_kqv=True,
                    last_n_tokens_size=64,
                    lora_base=None,
                    lora_scale=1.0,
                    lora_path=None,
                    numa=False,
                    chat_format="llama-2",
                    chat_handler=None,
                    draft_model=None,
                    tokenizer=None,
                    type_k=None,
                    type_v=None,
                    verbose=False
                   )
        st.session_state.llm = llm
        logger.info("### Initializing LLM completed.")
    else:
        llm = st.session_state.llm


    #####################################################
    # Get RAG data from vector db based on user prompt. #
    #####################################################
    def getRagData(promptText):
        logger.info("#### getRagData() entered.")
        ###############################################################################
        # Initial the the sentence transformer and encode the query prompt.
        logger.debug(f"#### Encode text query prompt to create vectors. {promptText}")
        model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
        vector = model.encode(promptText)
        
        logLevel = logger.getEffectiveLevel()
        if logLevel >= logging.DEBUG:
            wrks = str(vector)
            logger.debug(f"### vector: {wrks}")

        
        vectorList = []
        for vec in vector:
            vectorList.append(vec)
        
        if logLevel >= logging.DEBUG:
            logger.debug("#### Print vectors.")
            wrks = str(vectorList)
            logger.debug(f"vectorList: {wrks}")

        # Fetch chunks and print chunks.
        logger.debug("#### Retrieve semchunks from db using vectors from prompt.")
        wpChunksCollection = st.session_state.wpChunksCollection
        semChunks = wpChunksCollection.query.near_vector(
            near_vector=vectorList,
            distance=0.7,
            limit=3
        )
        
        if logLevel >= logging.DEBUG:
            wrks = str(semChunks)
            logger.debug(f"### semChunks[0]: {wrks}")

        # Print chunks, corresponding document and document title.
        ragData = ""
        logger.debug("#### Print individual retrieved chunks.")
        wpCollection = st.session_state.wpCollection
        for chunk in enumerate(semChunks.objects):
            logger.debug(f"#### chunk: {chunk}")
            ragData = ragData + chunk[1].properties['chunk'] + "\n"
            webpage_uuid = chunk[1].properties['references']['webpage']
            logger.debug(f"webpage_uuid: {webpage_uuid}")
            wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
            logger.debug(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
        #collection = client.collections.get("Chunks")
        logger.debug("#### ragData: {ragData}")
        if ragData == "" or ragData == None:
            ragData = "None found."
        logger.info("#### getRagData() exited.")
        return  ragData
     
     
    #################################################
    # Retrieve all RAG data for the user to review. #
    #################################################
    def getAllRagData():
        logger.info("#### getAllRagData() entered.")
        
        chunksCollection = client.collections.get("Chunks")
        response = chunksCollection.query.fetch_objects()
        wstrObjs = str(response.objects)
        logger.debug(f"### response.objects: {wstrObjs}")
        for o in response.objects:
            wstr = o.properties
            logger.debug(f"### o.properties: {wstr}") 
        logger.info("#### getAllRagData() exited.")            
        return  wstrObjs

    ##########################
    # Display UI text areas. #
    ##########################
    col1, col2 = st.columns(2)
    with col1:
        if "sysTA" not in st.session_state:
            st.session_state.sysTA = st.text_area(label="System Prompt",placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.")
        elif "sysTAtext" in st.session_state:
            st.session_state.sysTA = st.text_area(label="System Prompt",value=st.session_state.sysTAtext,placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.")
        else:
            st.session_state.sysTA = st.text_area(label="System Prompt",value=st.session_state.sysTA,placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.")
            
        if "userpTA" not in st.session_state:
            st.session_state.userpTA = st.text_area(label="User Prompt",placeholder="Prompt the LLM with a question or instruction.", \
            help="Enter a prompt for the LLM. No special characters needed.")
        elif "userpTAtext" in st.session_state:
            st.session_state.userpTA = st.text_area (label="User Prompt",value=st.session_state.userpTAtext,placeholder="Prompt the LLM with a question or instruction.", \
            help="Enter a prompt for the LLM. No special characters needed.")
        else:
            st.session_state.userpTA = st.text_area(label="User Prompt",value=st.session_state.userpTA,placeholder="Prompt the LLM with a question or instruction.", \
            help="Enter a prompt for the LLM. No special characters needed.")

    with col2:
        if "ragpTA" not in st.session_state:
            st.session_state.ragpTA = st.text_area(label="RAG Response",placeholder="Output if RAG selected.",help="RAG output if enabled.")
        elif "ragpTAtext" in st.session_state:
            st.session_state.ragpTA = st.text_area(label="RAG Response",value=st.session_state.ragpTAtext,placeholder="Output if RAG selected.",help="RAG output if enabled.")
        else:
            st.session_state.ragpTA = st.text_area(label="RAG Response",value=st.session_state.ragpTA,placeholder="Output if RAG selected.",help="RAG output if enabled.")

        if "rspTA" not in st.session_state:
            st.session_state.rspTA = st.text_area(label="LLM Completion",placeholder="LLM completion.",help="Output area for LLM completion (response).")
        elif "rspTAtext" in st.session_state:
            st.session_state.rspTA = st.text_area(label="LLM Completion",value=st.session_state.rspTAtext,placeholder="LLM completion.",help="Output area for LLM completion (response).")
        else:
            st.session_state.rspTA = st.text_area(label="LLM Completion",value=st.session_state.rspTA,placeholder="LLM completion.",help="Output area for LLM completion (response).")
    
    
    ####################################################################
    # Prompt the LLM with the user's input and return the completion.  #
    ####################################################################
    def runLLM(prompt):
        logger = st.session_state.logger
        logger.info("### runLLM entered.")
        
        max_tokens = 1000
        temperature = 0.3
        top_p = 0.1
        echoVal = True
        stop = ["Q", "\n"]

        modelOutput = ""
        with st.spinner('Generating Completion (but slowly)...'):
            modelOutput = llm.create_chat_completion(
               prompt
               #max_tokens=max_tokens,
               #temperature=temperature,
               #top_p=top_p,
               #echo=echoVal,
               #stop=stop,
            )
        result = modelOutput["choices"][0]["message"]["content"]
        #result = str(modelOutput)
        logger.debug(f"### llmResult: {result}")
        logger.info("### runLLM exited.")
        return result


    ##########################################################################
    # Build a llama-2 prompt from the user prompt and RAG input if selected. #
    ##########################################################################
    def setPrompt(pprompt,ragFlag):
        logger = st.session_state.logger
        logger.info(f"### setPrompt() entered. ragFlag: {ragFlag}")
        if ragFlag:
            ragPrompt = getRagData(pprompt)
            st.session_state.ragpTA = ragPrompt
            if ragFlag != "None found.":
                userPrompt = pprompt + " " \
                               + "Also, combine the following information with information in the LLM itself. " \
                               + "Use the combined information to generate the response. " \
                               + ragPrompt + " "
            else:
                userPrompt = pprompt
        else:
            userPrompt = pprompt
        
        fullPrompt = [
          {"role": "system", "content": st.session_state.sysTA},
          {"role": "user", "content": userPrompt}
        ]
          
        logger.debug(f"### userPrompt: {userPrompt}")
        logger.info("setPrompt exited.")
        return fullPrompt


    #####################################
    # Run the LLM with the user prompt. #
    #####################################
    def on_runLLMButton_Clicked():
        logger = st.session_state.logger
        logger.info("### on_runLLMButton_Clicked entered.")
        st.session_state.sysTAtext = st.session_state.sysTA
        logger.debug(f"sysTAtext: {st.session_state.sysTAtext}")
        
        wrklist = setPrompt(st.session_state.userpTA,st.selectRag)
        st.session_state.userpTA = wrklist[1]["content"]
        logger.debug(f"userpTAtext: {st.session_state.userpTA}")
        
        rsp = runLLM(wrklist)
        st.session_state.rspTA = rsp
        logger.debug(f"rspTAtext: {st.session_state.rspTA}")
        
        logger.info("### on_runLLMButton_Clicked exited.")


    #########################################
    # Get all the RAG data for user review. #
    #########################################
    def on_getAllRagDataButton_Clicked():
        logger = st.session_state.logger
        logger.info("### on_getAllRagButton_Clicked entered.")
        st.session_state.ragpTA = getAllRagData();
        logger.info("### on_getAllRagButton_Clicked exited.")


    #######################################
    # Reset all the input, output fields. #
    #######################################
    def on_resetButton_Clicked():
        logger = st.session_state.logger
        logger.info("### on_resetButton_Clicked entered.")
        st.session_state.sysTA     = ""
        st.session_state.userpTA   = ""
        st.session_state.ragpTA    = ""
        st.session_state.rspTA     = ""
        logger.info("### on_resetButton_Clicked exited.")
      

    ###########################################
    # Display the sidebar with a checkbox and #
    # text areas.                             #
    ###########################################
    with st.sidebar:
        st.selectRag = st.checkbox("Enable RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible")
        st.runLLMButton        = st.button("Run LLM Prompt",key=None,help=None,on_click=on_runLLMButton_Clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)
        st.getAllRagDataButton = st.button("Get All Rag Data",key=None,help=None,on_click=on_getAllRagDataButton_Clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)
        st.resetButton         = st.button("Reset",key=None,help=None,on_click=on_resetButton_Clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)

    logger.info("#### Program End Execution.")
    
except Exception as e:
    try:
        emsg = str(e)
        logger.error(f"Program-wide EXCEPTION. e: {emsg}")
        with open("/app/startup.log", "r") as file:
            content = file.read()
            logger.debug(content)
    except Exception as e2:
        emsg = str(e2)
        logger.error(f"#### Displaying startup.log EXCEPTION. e2: {emsg}")